

DEPARTMENT OF COMPUTER SCIENCE

A Programming Language Where the Syntax and Semantics Are

Mutable at Runtime

Christopher Graham Seaton

A dissertation submitted to the University of Bristol in accordance with the requirements

of the degree of Master of Enginnering in the Faculty of Engineering

May 2007 CSMENG-07

Declaration

A dissertation submitted to the University of Bristol in

accordance with the requirements of the degree of Master of Enginnering in

the Faculty of Engineering. It has not been submitted for any other

degree or diploma of any examining body. Except where

specifically acknowledged, it is all the work of the Author.

Christopher Graham Seaton, May 2007

SUMMARY

Katahdin is a programming language where the syntax and semantics are mu-

table at runtime. The Katahdin interpreter parses and executes programs ac-

cording to a language definition that can be modified by the running program.

Commands to modify the language definition are similar to those that define

new types and functions in other languages, and can be collected into lan-

guage definition modules.

Katahdin can execute programs written in any language which it has a defini-

tion module for. The definition of more than one language can be composed

allowing more than one language to be used in the same program, the same

file, and even the same function. Data and code is shared between all lan-

guages, with a function defined in one language callable from another with

no binding layer.

Traditional language development involves using a parser generator tool to

generate a static parser from the language grammar. Katahdin’s approach

is to just-in-time compile a parser from the grammar as the program runs.

The grammar can be modified as the program runs because the parser can be

recompiled to match it.

Recent research into grammar theory with parsing expression grammars and

parser theory with packrat parsers provided the basis for the techniques used

in Katahdin and will be referenced in this thesis along with an introduction to

my additions.

Katahdin is intended as a language independent interpreter and a develop-

ment platform that can replace traditional static parser generators for lan-

guage development. With further development Katahdin should be useable

as a drop in replacement for interpreters and compilers for a wide range of

languages, and as a platform for development of new languages.

Using a single runtime to execute any programming language will reduce de-

velopment costs to businesses. For any combination of languages used in a

system, only a single runtime has to be maintained, ported between platforms

and supported. The ability to use multiple languages in the same program

will allow businesses to use the most appropriate language for any part of the

system. For example, an engineer could write the core of a program in FOR-

TRAN and then add a user interface written in Python, without worrying about

interfacing between two runtimes.

1

ACHIEVEMENTS

• Took recent research into grammar and parser theory that is currently

being applied at compile-time and applied it at run-time

• Developed a just-in-time compiler for a packrat parser of parsing expres-

sion grammars

• Implemented the Katahdin interpreter, standard library and graphical

debugger

• Implemented language definition modules for a subset of Python, FOR-

TRAN and SQL

• Made more than 270 version control commits over 240 days (version

control log submitted electronically)

• Wrote more than 27,000 lines of C♯, Python and Katahdin code, includ-

ing prototypes and test routines

• Current implementation of interpreter and standard library is over 19,000

lines of C♯ and Katahdin code

• Submitted theory and implementation details as a paper to the Sixth

International Conference on Generative Programming and Component En-

gineering 2006

2

CONTENTS

Summary 1

Achievements 2

Table of Contents 3

List of Figures 5

Acknowledgements 6

1 Background 7

1.1 Programming Languages . 7

1.2 The Advantages of Kathadin’s Approach 8

1.2.1 A Single Runtime . 8

1.2.2 Language Interoperability 9

1.2.3 A New Concept of Languages 10

1.3 Theory Background . 11

1.3.1 Grammars . 11

1.3.2 Parsing . 12

1.3.3 Semantics . 13

1.4 Applied Theory . 14

1.4.1 Parsing Expression Grammars 14

1.4.2 Packrat Parsing . 16

2 Technical Basis 19

2.1 The Katahdin Language . 19

2.1.1 Design . 19

2.1.2 Implementation . 20

2.2 Grammar . 21

2.2.1 Annotations . 22

2.2.2 Expressing Recursion . 22

2.2.3 Expressing Precedence 25

2.2.4 Expressing Lexemes and White-Space 26

2.2.5 Building Parse Trees . 29

2.3 Semantics . 29

2.4 Parsing . 31

2.4.1 Parsing Recursion . 33

2.4.2 Parsing Precedence . 36

3 Design and Implementation 38

3.1 Prototyping . 38

3.2 Platform . 38

3

3.2.1 Platform Options . 39

3.2.2 Version Control . 40

3.3 Implementation . 40

3.4 Implementation of the Language 41

3.5 Implementation of the Parser 42

3.5.1 Compiling the Parser . 42

3.6 Implementation of the Debugger 43

3.7 File Handling . 43

3.8 Standard Library . 44

3.9 Language Modules . 45

3.10 Testing . 47

4 Current Status and Future Plans 48

4.1 State of Implementation . 48

4.2 Unsolved Problems . 48

4.2.1 Memory Consumption 48

4.2.2 Speed . 48

4.2.3 Error Handling . 49

4.3 Future Development . 49

4.3.1 Debugger . 49

4.3.2 Language Modules . 50

4.4 Conclusion . 50

Bibliography 51

4

LIST OF FIGURES

1.1 For-statement expressed in Katahdin 8

1.2 Interoperation between FORTRAN and Python 9

1.3 PEG grammar requiring backtracking 16

1.4 PEG rewritten to show effect of memoization 17

2.1 The factorial operator expressed in Katahdin as a function . . . 20

2.2 Demonstration of problems with prioritised alternative operator 21

2.3 Example Katahdin grammar expressions 22

2.4 Annotation syntax . 22

2.5 YACC grammar fragment showing associativity 24

2.6 Rats! grammar fragment showing associativity 24

2.7 Subtraction operator expressed in Katahdin 24

2.8 Operator precedence expressed in Katahdin 27

2.9 Definition of a modulo operator in Katahdin 27

2.10 Definition of an identifier lexeme in Katahdin 28

2.11 Setting global white-space in Katahdin 28

2.12 Fields in the implementation of the add operator in Katahdin . 29

2.13 Use of the token operator in Katahdin 30

2.14 The factorial operator expressed in Katahdin as an expression . 30

2.15 Parsing algorithm for sequence expressions 31

2.16 Parsing algorithm for not-predicates 32

2.17 Parsing algorithm for and-predicates 32

2.18 Parsing algorithm for rules . 33

2.19 Parsing algorithm for longest alternative expressions 34

2.20 Modification to parsing algorithm to support non-recursion . . . 34

2.21 Modification to parsing algorithm to support right-recursion . . 35

2.22 Demonstration of the dropPrecedence option 36

3.1 Example Katahdin syntax tree 41

3.2 Screenshot of the Katahdin debugger 44

3.3 The SqliteExpression . 46

5

ACKNOWLEDGEMENTS

I would like to thank Dr. Henk Muller for his guidance throughout this

project, particularly with regard to helping me write and submit my paper.

6

CHAPTER 1

BACKGROUND

1.1 Programming Languages

“Programming languages are notations for describing computa-

tions to people and to machines.”[4]

A programming language is an interface between the programmer and the

computer. The interface is defined by the grammar that describes the syntax

of how keywords, names and symbols are used to build constructions such as

expressions and statements, and the semantics that describe what the com-

puter should do for each construct.

Programs are processed by compilers and interpreters that translate the pro-

gram into a form that can be executed by another program, or execute it

immediately. In this thesis I use the informal term runtime to refer to any

compiler or interpreter tool.

With traditional development tools, each runtime accepts only one language,

and every time a new language is designed a new runtime is written from

scratch. Almost all programming languages are extremely similar in their de-

sign and implementation, and there are no technical reasons why a separate

runtime is needed for each language.

Programming languages are very tightly coupled with the implementations

of runtimes, and the two concepts are confused. C is generally considered

a compiled language because a compiler happens to be the most common

runtime. There is no reason why C cannot be interpreted, and interpreters

such as CINT[12] are available. In the same way, JavaScript is thought of as

an interpreted scripting language for web browsers, but there is no reason

why it could not be compiled and run on a supercomputer.

Katahdin takes the approach that a programming language is just another

application programming interface (API), like a library of functions, and as

runtimes can use multiple APIs, a single runtime should be able to accept

multiple languages. The Katahdin interpreter has loadable language definition

modules that define the syntax and semantics of a complete programming

language, allowing it to execute programs written in any language it has a

definition module for.

7

Figure 1.1: For-statement expressed in Katahdin

class ForStatement : Statement {
pattern {

"for" "(" init:Expression ";"

cond:Expression ";" inc:Expression ")"

body:Statement

}
method Run() {

init.Get...();

while (cond.Get...()) {
body.Run...();

inc.Get...();

}
}

}

Language definition modules are written like function libraries using the Katahdin

programming language. The Katahdin language is imperative, object-oriented

and duck-typed. It should be instantly familiar to anyone who has used C++,

Java or C♯. To define new language constructs, the Katahdin class statement

can have an attached pattern which is entered into the grammar. The class

is instantiated when its pattern matches. Semantics are defined for each con-

struct in terms of methods written in the existing language. New constructs

are therefore defined in terms of the existing constructs.

Figure 1.1 shows how the for-statement is defined in the Katahdin standard

library, in terms of a while-statement. The details of the Run() method and

the init.Get...() notation will be described later, but the example clearly

shows how intuitive it is to define new language constructs in Katahdin.

After you have defined your own languages in Katahdin, languages beyond

that could be defined in terms of your own languages. The semantics of Python

could be expressed in terms of C, for example.

1.2 The Advantages of Kathadin’s Approach

1.2.1 A Single Runtime

Running a system that is written in multiple programming languages is cur-

rently very difficult. For each language that you use a separate runtime needs

to be chosen, evaluated, installed and possibly licensed. Each runtime needs

to be maintained with security updates and bug fixes. If you move to a dif-

ferent platform all of the runtimes need to be ported. You may find that a

runtime available on one platform is not available on another.

8

Figure 1.2: Interoperation between FORTRAN and Python

import "fortran.kat";

import "python.kat";

fortran {
SUBROUTINE RANDOM(SEED, RANDX)

INTEGER SEED

REAL RANDX

SEED = 2045*SEED + 1

SEED = SEED - (SEED/1048576)*1048576

RANDX = REAL(SEED + 1)/1048577.0

RETURN

END

}

python {
seed = 128

randx = 0

for n in range(5):

RANDOM(seed, randx)

print randx

}

With Katahdin there is a single runtime to maintain. Security updates and bug

fixes to the runtime apply to all languages that you use. Only one runtime has

to be considered when moving platform.

1.2.2 Language Interoperability

Interoperating between languages that are running on different runtimes is

also complicated. If you are running two programs on separate runtimes the

only way to share data between them is to set up an input-output channel.

This has to be explicitly set up and limits performance. Sharing code such as

functions and types is even more complicated, requiring software component

protocols such as CORBA and COM.

When running on Katahdin data and code is shared between all languages. A

function defined in one language can be called by another without any kind of

binding or input-output. Figure 1.2 shows a program with a function written

in FORTRAN that is called from Python.

9

Katahdin allows for genuine code reuse. If you have a simple function written

in Python that you want to use from your Perl program, currently the only

sensible way to achieve this is to rewrite the function. In Katahdin the function

could be simply copy-and-pasted into the Perl program.

1.2.3 A New Concept of Languages

Katahdin makes programming languages just another tool for developers, in-

stead of letting your language choice restrict your choice of platform and li-

braries. With Katahdin you are free to use whatever language you want for any

part of the program. You can use the most appropriate language for each part

for the program, depending on the task being solved, the available developers

and the library of available code.

For example, a numerical processing program written in FORTRAN might have

occasion to perform some kind of text processing, perhaps as part of input-

output. FORTRAN is not best suited for text processing so the current best

option would be to export data from the FORTRAN program, load it into a

language such as Perl and perform the text processing there. This involves

setting up two lots of input-output and managing two separate runtimes. With

Katahdin the text processing part of the program could be written in Perl, in

the same file as the FORTRAN code.

Beyond the library of definition modules for standard languages, Katahdin

allows programmers to control their own languages. Programmers can add

a new language construct such as a new expression or statement as easily as

defining a new function. The concept of domain-specific languages, languages

written for a particular purpose in one industry or business, can be extended

to application-specific languages – extensions to a language implemented for

just one application. Katahdin makes this possible because unlike parser gen-

erators, the grammar is mutable at runtime and new constructs can be added

by a running program and do not involve modifying the implementation of

the interpreter.

Even if programmers are not going to develop their own languages, this has

concrete applications. For example, when Sun wanted to add a for-each-

statement to Java, users had to wait a complete release cycle as the compiler

was updated, builds made and distributed to users to install. With Katahdin

the new construct could have been defined in a few lines by anyone and dis-

tributed as a module for programmers to put in their standard library.

10

1.3 Theory Background

1.3.1 Grammars

The theory behind the traditional description of the syntax of programming

languages is Chomsky’s hierarchy of formal grammars[8]. Chomsky described

generative grammars for describing human languages such as English, where

the concept is recursive rules that produce sequences of lexemes (words and

punctuation in the context of human languages, and identifiers, keywords and

symbols in the context of programming languages). Generative grammars

are suitable for human languages where the focus is on building phrases and

there is natural ambiguity, but less suitable for programming languages where

the focus is on breaking phrases down, or parsing them, and ambiguity is a

problem that has to be worked around.

Regular Grammars

Regular grammars are the most restrictive of the hierarchy, recog-

nised by a finite state automaton. Regular grammars are applied in

lexical analysis, described below, and the regular expressions (RE)

often used to express search patterns for text strings.

Context-Free Grammars

The productions of Context-free grammars (CFGs) cannot refer to

any text around the production, or rule, for context. CFGs are

recognised by a pushdown automaton, an FSA with a stack data

structure that allows it to store a state to return to later. This

allows recursive rules.

Context-Sensitive Grammars

The productions in Context-sensitive grammars may apply depend-

ing on the surrounding text (the context of the production) and

are recognised by linear bounded automatons, which are Turing

machines where memory consumption is linear to the size of the

input.

Unrestricted Grammars

Unrestricted grammars include all formal grammars and there are

no restrictions on the type of productions in the grammar. Any

Turing machine can parse text according to an unrestricted gram-

mar but the complexity and use of resources by the parser are also

unrestricted.

11

Most programming languages are defined using CFGs expressed in Backus-

Naur form with informally defined extensions in the form of code actions

to support the context-sensitive parts of the language. The syntax of lan-

guages including C and Eiffel is context-sensitive and are implemented using

this method.

Opposed to the generative grammars of the Chomsky hierarchy are the recognition-

based, or analytic grammars which conceptually focus on parsing texts accord-

ing to a language instead of constructing them. Ford[11] gives a formal ex-

ample of the difference between generative and recognition-based grammars

for a language consisting of any number of pairs of the character a:

A generative grammar {s ∈ a∗ | s = (aa)n} constructs a string as

any number of concatenated a’s.

A recognition-based grammar {s ∈ a∗ | (|s| mod 2 = 0)} accepts a

string of a’s if the length is even.

A top-down parsing language[6] (TDPL) is a recognition-based grammar that

describes how to parse constructs instead of how to generate them. As will

be shown, the Katahdin grammar is a form of parsing expression grammar and

can ultimately be reduced to a TDPL.

1.3.2 Parsing

In traditional language development, parsing begins with a lexical analysis of

the source text to identify lexemes such as identifiers, keywords and symbols.

This is for performance to create an abstracted software architecture. Algo-

rithms for lexical analysis are generally faster and a stream of identified tokens

is simpler input for syntax parsing algorithms than a stream of characters.

The lexical definition of the language is described in a separate document from

the syntax, using a regular grammar recognised by a finite state automaton

(FSA). Tools to produce FSAs from regular grammars include Lex and Flex.

The output of these programs is the input to the syntax recogniser.

Despite the described advantages, a separate lexical analysis stage fragments

the language definition and restricts language design. The use of regular

grammars to define the lexicon of languages is the cause of the irritating and

confusing restriction on nesting /* block comments */ in C and Java pro-

grams. Regular grammars have no state and so would not be able to remem-

ber the level of nesting at any point. Katahdin uses a single grammar for both

lexical and syntactical recognition, allowing for more complex lexemes (in-

cluding nested block comments) and avoiding the unnecessary fragmentation

of the language definition.

The minimal program that can parse the context-free grammars traditionally

used to define languages is a pushdown automaton. The pushdown automa-

ton’s stack allows the parser to recognise more complicated constructs than

12

the lexer, including nested constructs such as expressions with operands that

are other expressions, and the nested block comments that the lexer could not

handle.

The two most common algorithms for parsing CFGs are LR(k) and LL(k). LR(k)

parsing is often called bottom-up because it recognises the smallest constructs

first by applying productions to group tokens, then grouping those constructs

into larger constructs. LL(k) parsing is conversely called top-down because

it recognises constructs by applying the largest constructs first and moving

down to smaller constructs and finally tokens. Both types of parser often use a

state machine and a set of look-up tables for moving between states. Tools to

produce LR(k) parsers include Yacc and Bison. Tools to produce LL(k) parsers

include Antlr and JavaCC.

The look-ahead variable k in LL(k) and LR(k) refers to the maximum number

of tokens that need to be checked ahead of the current position to finally

decide which production to take from a set of alternatives. In practice the

value of k is often about 2 for LL(k) grammars and is almost always 0 or 1

for LR(k) grammars. The complexity and resource requirements of the parser

increase with the variable k. As will be shown, the value of k required by

a grammar does not need to affect parsing performance, and with Katahdin

language designers can stop worrying about it.

All LL(k) and some LR(k) grammars can also be parsed by a recursive descent

parser. Instead of using a state machine each production is implemented as

a recursive function that consumes tokens and returns a syntax tree. A TDPL

can be seen as a formal description of a recursive descent parser. Recursive

descent parsers are often written by hand, as the produced program is very

similar to the grammar and a tool does not have to be used. Recursive descent

parsers are also the output of many LL(k) parser generators including Antlr.

Katahdin’s parsing algorithm is a packrat parser, a specialised form of recursive

descent parser.

1.3.3 Semantics

The semantics of programming languages are rarely defined formally. Where

the syntax is defined using formal grammars, at best the semantics are de-

scribed in a carefully written English document, and at worst defined only by

a reference implementation, where the semantics are defined as the behaviour

of one implementation of the language, bugs and all. The semantics of lan-

guages such as C and Java are defined by documentation, where languages

such as Perl and Ruby have a reference implementation.

Mechanisms do exist for formally describing semantics, such as attribute gram-

mars, originally developed by Knuth for formally describing the semantics of

context-free languages[15]. However, they are usually used to specify the

context-sensitive parts of a language, to work alongside a context-free gram-

mar. Z Notation is a non-executable programming language based on mathe-

matical and set notation designed for formulating proofs of intended system

13

behaviour, particularly hardware systems. Z is considered hard to use and it

does not produce an executable definition so there is no equivalent tool to the

parser generators that produce executable code from a formal grammar.

The reality of language development is most people do not consider it im-

portant to formally define semantics, and so Katahdin does not tackle this

issue. However, it is possible to improve on traditional language develop-

ment, where the semantics are implemented throughout the source code of

the implementation in the form of routines that walk syntax trees. Katahdin’s

language definition modules couple the syntax of language constructs with

the complete implementation of their semantics in a single class definition.

1.4 Applied Theory

1.4.1 Parsing Expression Grammars

A parsing expression grammar[11] (PEG) is a recognition-based, or analytic

formal grammar. PEGs are usually represented in Backus-Naur form, and so

syntactically resemble most CFGs. The major difference between a CFG and

a PEG is the alternative operator. In a CFG the alternative operator is rep-

resented as | and is applied as a non-deterministic choice. This is where the

ambiguity is introduced in a CFG – the parser is free to choose between any

of the alternatives. In a PEG the equivalent operator is represented as / and is

applied as prioritised choice. The parser must try the alternatives in the order

they are specified, starting at the same point for each alternative. The first

successfully matching alternative is unconditionally taken. If no alternatives

match, the alternative operator fails.

The repetition operators ?, * and + are also defined deterministically, as

greedy operators that consume as much of the source text as they can. Sup-

port for non-greedy constructs is restored with the two syntactic predicate[18]

operators, ! and &.

The not-predicate, !e, tries to match e. If it matches, the predicate fails, and

conversely if e fails, the predicate matches. Whether or not e matches, none

of the source text is consumed. The and-predicate, &e is similar but matches

if e does, and not if e doesn’t. It also consumes no source text.

PEGs were first described by Ford[11] in 2004, but he demonstrated that they

can be reduced to a pair of TDPLs developed by Birman and Ullman in the

1970s, the TMG Recognition Schema[6] and Generalised TS[7].

Formal Description

Formally, a PEG is defined[11] as a 4-tuple G = (VN , VT , R, eS). VN is a finite

set of non-terminal symbols, which in Katahdin are the language constructs

14

represented by classes. VT is a finite set of terminal symbols, the set of input

symbols, which in the case of Katahdin is the Unicode character set. VN ∩VT =
0 so the sets of non-terminals and terminals do not overlap. R is a finite set of

rules, each a tuple (A, e) that is a production of the form A← e where A ∈ VN

(A is a non-terminal) and e is a parsing expression, defined as below. eS is the

starting parsing expression.

A parsing expression e is minimally defined[11] as:

• ǫ, an empty string which always matches

• a where a ∈ VT , a terminal, or Unicode character in Katahdin

• A where A ∈ VN , a non-terminal, or language construct in Katahdin

• e1e2, a sequence of other parsing expressions

• e1/e2, a prioritised choice between two parsing expressions

• e1∗, zero-or-more repetitions of another parsing expression

• !e1, a not-predicate

This is the minimal definition. Other operators are defined in terms of the

minimal set1:

• �, any member of VT , any Unicode character in Katahdin

• a1−a2 where a ∈ VT , a range of non-terminals, or Unicode characters in

Katahdin

• e1+, one-or-more repetitions of another parsing expression, defined as

e1e1∗

• e1?, one-or-more repetitions of another parsing expression, defined as

e1/ǫ so either e1 or the empty string which will always match

• &e1, an and-predicate, defined as !(!e1)

Finally, a common pattern:

• !�, the end of input

Ford[11] has shown that the minimal set of PEGs expressions can express all

LL(k), languages, all deterministic LR(k) languages and also some context-

sensitive languages.

1Described by Ford as part of his reductions[11]

15

Figure 1.3: PEG grammar requiring backtracking

a← b/c
b← ex
c← ey

Evaluation

Although PEGs are a recent tool for describing grammars, their theory has

solid foundations. Ford[11] showed how they can be reduced to TDPLs from

the 1970s. The semantic predicates have also been successfully applied in the

ANTLR LL(k) parser.

Two particular recent applications of PEGs give us a good insight into their

capabilities. The Rats![13] parser generator, published summer 2006 as this

project was started, is a traditional parser generator producing Java code, sim-

ilar to Antlr. It has aims similar to Katahdin with modular grammars that are

composable, but only at as the development tools are being built. It would

be suitable for creating a separate compiler program to support a custom lan-

guage, but not for user modification of the grammar. Redziejowski’s eval-

uation of PEGs[19], published in February 2007 after this project was well

developed, consisted of expressing the Java 1.5 grammar in a PEG with suc-

cessful results. Unlike Rats! and Katahdin, Redziejowski used a pure PEG.

Redziejowski found that his PEG parsed Java in “acceptable” time and space,

but thought that more work was needed on PEG as a language specification

tool. Rats! had their approach to solving this problem, which will be described

in reference to Katahdin. The next chapter presents Katahdin’s own solutions

to the problem of elegantly specifying a language instead of a parsing algo-

rithm.

Application in Katahdin

The Katahdin grammar is a modified parsing expression grammar. Extra anno-

tation operators, as described later, simplify description of common language

constructs and making modular definition easier.

1.4.2 Packrat Parsing

Parsing expression grammars can be parsed by a simple top-down, recursive

descent parser[6]. Such a parser has to backtrack[7] when parsing the PEG /
operator – when one alternative fails the next is tried from back at the same

starting position. This parsing algorithm is valid but risks exponential runtime.

Consider the PEG fragment in figure 1.3.

16

Figure 1.4: PEG rewritten to show effect of memoization

a← e(b/c)
b← x
c← y

To parse a at character n in the source text, the parser will try to match b and

failing that c. When it goes to match b it tries to match e at n and then x. If

x fails to match, b fails and the parser moves on to the second alternative, c.

When the parser goes to match c it again tries to match e at n.

The parsing of e at character n in the production c is redundant as the parser

already did that while trying to match b. It is possible to trade-off the time

taken by the second parsing, with the space required to store the result of

parsing e at n. To do this, whenever e is parsed the memory is checked to

see if the memory contains the result of parsing e at n. If so, the memoized

result is used as if it had been just parsed. When e is parsed for the first time,

the result, if successful or not, is stored in the memory. This is equivalent to

rewriting the fragment in figure 1.3 as shown in figure 1.4.

However, the grammar writer does not have to actually rewrite the grammar.

The original clear definition of b as ex can remain while gaining the effect of

rewriting to factor x out. This ability to keep clear definitions is one of the key

advantages of PEGs.

A parser that does this is known as a memoizing, or packrat parser[10]. Like

parsing expression grammar, the term packrat parser was coined by Ford in

2002.

The packrat parser’s memory is a map of entry tuples to the result of parsing.

A memory entry 2-tuple contains the name of the production that was being

applied and the position in the source text where it was applied n. Katahdin

extends the memory entry tuple to include other state information to support

the extensions to the grammar and parser.

17

Evaluation

A packrat parser can parse any LL(k), LR(k)[10] or TDPL grammar[9], as well

as some grammars that require an unlimited look-ahead k. Packrat parsers are

ideal for implementing PEGs[11] and are used by all of the small number of

available PEG parser generators.

Ford showed[10] that packrat parsers alleviated the problems of the parser

generators of the YACC lineage[14]. Katahdin works to continue to solve these

problems.

Application in Katahdin

Katahdin employs a modified packrat parser to support the modified Katahdin

PEG.

18

CHAPTER 2

TECHNICAL BASIS

2.1 The Katahdin Language

2.1.1 Design

Although Katahdin can be viewed as a generic runtime for any language, a

base language is provided for implementing the standard library and writ-

ing other language definitions. The language should therefore be useable by

programmers coming from as many different languages as possible and be

powerful and flexible enough to express the semantics of many paradigms

and languages.

I designed a language that is:

• Free-form. Languages such as Python and occam express scope using

the off-side rule[16] where indentation is increased with the scope depth

and statements are terminated by a line break. Programmers either love-

or-hate this style, so I avoided it.

• Curly-braced. Beginning with BCPL in the 1960s, curly braces {} have

always been used to express scope by the leading languages of the day,

including as C, C++, Java and C♯. Almost all programmers will have

experience of curly-braces.

• Imperative. PEGs can be conceived as an imperative grammar so it is

natural that the language is also imperative. Most programmers will be

familiar with the imperative paradigm.

• Object-oriented. Object-orientation is a design well understood by pro-

grammers and implemented by many languages. As will be shown,

the design of the Katahdin grammar could also be described as object-

oriented.

• Dynamically typed, also known as runtime or latent typing. As in most

interpreted or scripting languages, Katahdin variables and functions are

not typed. Objects carry their type with them, and type compatibility is

resolved at the point of execution of an operator by duck-typing. Objects

are automatically converted between types as needed. Katahdin has to

19

Figure 2.1: The factorial operator expressed in Katahdin as a function

function factorial(n) {
if (n == 0)

return 1;

else

return n * factorial(n - 1);

}

support dynamically and statically typed languages, and dynamic typing

seemed the most general of the two typing disciplines.

Figure 2.1 briefly illustrates the flavour of the language by implementing the

factorial function1.

2.1.2 Implementation

The Katahdin language is loaded into the grammar data structure during the

interpreter’s bootstrapping stage at start-up. The language’s grammar is ex-

pressed in a small S-expression style language that is parsed by a hand-written

recursive-descent parser. Only the minimal language is defined in the inter-

preter. This base provides enough power for the standard library, written in

Katahdin and imported at start-up, to define more complex language con-

structs.

For example, the for-statement illustrated in figure 1.1 is taken verbatim from

the standard library. It defines the higher level for-statement in terms of the

base construct while-statement. The for-each-statement is then defined in

terms of a for-statement and so on. It is testament to the power of Katahdin

that operators as fundamental as array subscripting can be implemented from

scratch in the language itself.

Beyond the grammar and parsing, the rest of the Katahdin language is imple-

mented using traditional techniques. A concrete syntax tree is created by the

parser, which is walked to produce a code tree. Katahdin evaluates the code

tree directly by walking it. An optimisation, discussed in chapter 4, would be

to transform to an optimal form, and compile it to machine instructions. The

language implementation is further described in chapter 3.

1Of course, in Katahdin the natural way to implement factorial is not to define a function,

but a new operator, as is illustrated in figure 2.14

20

Figure 2.2: Demonstration of problems with prioritised alternative operator

Module 1:

e← e1/e2

e1 ← ‘1′

e2 ← ‘2′

Module 2:

e2 ← ‘12′

2.2 Grammar

Grammars in Katahdin are expressed using a modified PEG. The notation is

very similar to writing a CFG or RE.

Literal text is quoted, "text", and can include standard C-style escape se-

quences. A range of literal characters can be expressed with the range op-

erator "a".."z". The operator � matches any character and is rendered as a

full-stop character in the grammar source code. Other constructs are refer-

enced by name, Expression.

A sequence can be represented by simply delimiting with spaces, a b c. A

repetition is represented with the ?*+ operators, meaning zero-or-one, zero-

or-more and one-or-more respectively. Expressions can be grouped in paren-

theses, (), to control order of evaluation.

Semantic predicate operators &! match an expression but never consume any

of the text. The and-predicate & matches if the expression does, and fails if

it does not. The not-predicate ! matches only if the expression fails, and

conversely fails if it matches.

Alternatives are represented by the | operator. Unlike a PEG, which uses the

operator /, alternatives are chosen for the longest-match and the order the

alternatives are listed does not give priority. This may seem like an extreme

divergence from a standard PEG, but it is the best solution for modular gram-

mars, where you could reference a construct that is modified by a different

module. If the order alternatives are tried is specified by the first module, it

can be hard for a second module to add new constructs. For example, figure

2.2 shows two modules. The first module defines e as an alternative between

e1, which is the text ‘1’, and e2, which is the text ‘2’. The second module wants

to add a new definition of e2, the text ‘12’. With prioritised choice the second

module’s definition is ignored because the e1 always matches the character ‘1’

before the second module’s definition is considered. Longest-matching means

whichever definition matches the most source text is used, allowing differ-

ent modules to work together. PEGs are designed to be greedy, and longest-

matching conforms to this. As will be shown, prioritised choice is still part of

the Katahdin grammar and is employed to implement operator precedence.

21

Figure 2.3: Example Katahdin grammar expressions

Expression to match a universal end-of-line

"\r" "\n"? | "\n"
Expression to match a comma-delimited parameter list

"(" (Value ("," Value)*)? ")"

Expression to match a C-style line comment

"//" (!EndOfLine .)*

Figure 2.4: Annotation syntax

{
option name = value ;

option name ;

expression...

}

2.2.1 Annotations

A PEG can express all LL(k), deterministic LR(k) and some context-sensitive

languages, but we want a grammar that can express them all well. That is, the

grammar should succinctly express the language as the programmer conceives

it, and not as a parsing algorithm. To solve the problems described in the fol-

lowing sections, the Katahdin grammar includes a mechanism for annotating

expressions as conforming to a common pattern that the parser understands

how to apply. Annotations are applied to blocks, delimited with curly braces,

and the option keyword, as shown in figure 2.4.

There are several options defined in the Katahdin grammar, described below.

They can be set to a specific value by using the = operator, or the = and value

can be omitted to set the option to the value true. More than one option can

be set in a block.

2.2.2 Expressing Recursion

A common problem when writing a grammar is expressing rules that recurse

and solving the ambiguity that they introduce. For example, mathematical op-

erators, which are present in almost all programming languages, are defined

recursively – subtract is an expression and is defined as two expressions with

a - symbol between them. Those two expressions could be add expressions

themselves. We most naturally conceive the definition of subtract as:

22

Expression ← Number

Expression ← Expression ‘-’ Expression

For example, this definition can be applied to the following source text:

a− b− c

Based on our definition, this expression is ambiguous and has two interpreta-

tions:

((a− b)− c)
(a− (b− c))

In mathematics there is a convention of taking the first interpretation to solve

the ambiguity. This is known as associativity – the subtraction operator is

left-associative and binds tightest to the left of the expression. Even though

associative operators are a fundamental part of almost all programming lan-

guages and always present the same problems, implementing associativity is

still unnecessarily complicated with many traditional language development

tools.

For example, if we used our definition of the subtract operator in a standard

PEG or LL(k) grammar, the parser would fail. The definition of Expression be-

gins with Expression, so the parser will be forever trying to match Expression

and will eventually run out of stack space.

One solution is to rewrite recursion as repetition:

Expression ← Number (‘-’ Number)*

This is not ideal because instead of expressing the operator as it is used, we

are now expressing an algorithm to parse it. We are no longer specifying a

grammar, but a parser. Also, Expression now matches once for any number

of subtraction operators, instead of once per operator which is a better model

of the language.

Another method, given by Ford as a solution to the problem in PEGs[9, page

40], is to use a separate suffix pattern:

Expression ← Number Suffix

Suffix ← ‘-’ Number Suffix

Suffix ← ǫ

23

Figure 2.5: YACC grammar fragment showing associativity

%left ’-’

%%

expression : expression ’-’ expression

| number ;

Figure 2.6: Rats! grammar fragment showing associativity

Expr "-" Expr -> Expr left, cons("Minus")

This is even worse. Where we had one rule for one operator, we now have

three. This grammar doesn’t match our conception of the subtraction operator

at all. These two parsing algorithms are used in almost all grammars written

for tools such as Antlr, but there is a better solution.

LR(k) parser generators, such as YACC[14], BISON and their descendants al-

low the grammar writer to express a natural definition and then declare the

associativity, as shown in figure 2.5.

YACC’s particular implementation is not relevant to Katahdin because it uses

the very different LALR(1) table-based algorithm, but we adopt the idea.

Rats!, which uses a PEG and packrat parser, also takes a similar approach,

shown in figure 2.6.

Katahdin’s solution is to use an annotation. The operator is expressed nat-

urally and then annotated as being left-associative. Katahdin uses the term

left-recursive, as the name describes what the option does, rather than what

it is for. The complete expression for the subtraction operator in Katahdin is

therefore shown in figure 2.7.

Rules can be annotated with the options leftRecursive or rightRecursive.

Right-associative operators (represented in Katahdin as right-recursive) in-

Figure 2.7: Subtraction operator expressed in Katahdin

class Subtract : Expression {
pattern {

option leftRecursive;

Expression ’-’ Expression

}
}

24

clude the exponentiation, or power, operator. The default is for rules to be

simple recursive to allow any recursion. This option can be negated by as-

signing false to it to prevent recursion.

The Katahdin method is superior to YACC’s because the declarative component

is coupled with the syntax expression.

2.2.3 Expressing Precedence

Precedence, or priority, is a property of operators that describes the order in

which they should be applied when there is more than one operator in an

expression. In mathematics and most programming languages the ∗ and /
operators have higher precedence over the + and − operators and so are

applied to operands around them first. They are said to bind tighter as they

take operands from around them before other operators do. The + and −
operators are applied next. When there is more than one operator with the

same precedence, they are applied together in a single left-to-right pass:

a + b ∗ c/d− e
a + ((b ∗ c)/d)− e
((a + ((b ∗ c)/d))− e)

As with the other property of operators, their associativity, in most other gram-

mars and standard PEGs the grammar writer is required to express operator

precedence by writing a parsing algorithm. In the example below, a combi-

nation of the repetition and suffix patterns is used to implement associativity.

Precedence is implemented by making the rules cascade, so multiplicative op-

erators are only considered as an operand to additive operators:

Expression ← Term ExpressionSuffix*

ExpressionSuffix ← ’+’ Term

ExpressionSuffix ← ’-’ Term

Term ← Factor TermSuffix*

TermSuffix ← ’+’ Factor

TermSuffix ← ’-’ Factor

Factor ← Number

As with the solutions to associativity, this is an expression of a parsing algo-

rithm and not a grammar. A further problem is that for a single number, both

the Factor and Term rules will match even though those language constructs

are not present. Modularity is reduced because adding a new operator in the

middle of the precedence order will require changing unrelated rules either

side of this position, and if another module had already inserted rules, you

would not know which rules you had to modify.

25

The YACC solution is to read the order of precedence from the order that

operator’s associativity is set. This is simple and obvious, but doesn’t allow

for inserting a rule into the precedence order after it has been established.

Consequently, the whole precedence order has to be defined as one operation,

and away from the expression of the actual patterns.

The Katahdin solution shown in figure 2.8, is to naturally express the operators

as before, and to annotate them using the precedence-statement, another form

of grammar annotation. The precedence-statement establishes a precedence

relationship between two rules. Multiple precedence-statements build up a

precedence order between many rules.

The Katahdin solution makes it easy to define a new rule and insert it into the

order of precedence. For example, figure 2.9 shows a new C-style modulo op-

erator defined with left-associativity and the same precedence as the division

operator.

2.2.4 Expressing Lexemes and White-Space

White-space is the non-printing characters such as spaces and new lines used

along with punctuation to delimit lexemes. The text ‘ab’ is a single lexeme

unless white space or punctuation is used to separate the characters; ‘a b’,

‘a.b’. Programmers also use white space to format their code for better human

readability, and some languages, such as Python and occam, use white space

to express scope.

Traditional language development uses two different tools for the lexical and

syntactical analysis. White-space is normally only a lexical issue and so is

discarded at that stage. Where it does have relevance to the syntax, it is passed

as a token, like any other printing operator. At the syntax analysis stage, the

grammar writer does not need to deal with the white-space. In a PEG the two

stages are combined for a single definition of the language. A pure PEG needs

to explicitly allow white space wherever it is permissible:

Expression ← Number WhiteSpace? ‘+’ WhiteSpace? Number

However, this is not convenient and doesn’t fit with how programmers natu-

rally conceive syntax. Another option is to always allow white-space unless it

is explicitly disallowed. The Rats! parser generator takes this approach by sep-

arating lexical and syntactical rules. White-space is then not matched within

a lexical rule. In Katahdin I took the same approach but as I have not created

a separation between lexicon and syntax, an annotation is used to disable

white-space, as shown in figure 2.10.

The white-space annotation is passed down into rules that are matched so that

it can be used to set the global white-space pattern for a language, as shown

in figure 2.11.

26

Figure 2.8: Operator precedence expressed in Katahdin

class AddExpression : Expression {
pattern {

option leftRecursive;

Expression ’+’ Expression

}
}

class SubExpression : Expression {
pattern {

option leftRecursive;

Expression ’-’ Expression

}
}

precedence SubExpression = AddExpression;

class MulExpression : Expression {
pattern {

option leftRecursive;

Expression ’*’ Expression

}
}

class DivExpression : Expression {
pattern {

option leftRecursive;

Expression ’/’ Expression

}
}

precedence DivExpression = MulExpression;

precedence MulExpression > AddExpression;

Figure 2.9: Definition of a modulo operator in Katahdin

class ModExpression : Expression {
pattern {

option leftRecursive;

Expression ’%’ Expression

}
}

precedence ModExpression = DivExpression;

27

Figure 2.10: Definition of an identifier lexeme in Katahdin

class Identifier {
pattern {

option whitespace = null;

("a".."z")+

}
}

Figure 2.11: Setting global white-space in Katahdin

class Whitespace {
pattern {

"\r" "\n"? | "\n"
}

}
class Program {

pattern {
option whitespace = Whitespace;

Statement*

}
}

28

Figure 2.12: Fields in the implementation of the add operator in Katahdin

class AddExpression : Expression {
pattern {

option leftRecursive;

a:Expression ’+’ b:Expression

}
}

2.2.5 Building Parse Trees

The grammar described so far can be applied to verify the conformance of a

source text. To implement the semantics, a data structure representing the

source text according to the grammar is needed.

In most parser generators, the grammar writer annotates tokens that they

want to make root nodes in the syntax tree. Unannotated tokens become

leaves. For example, in the ANTLR parser generator a caret operator can be

applied to text tokens to make them a root node:

expression : term (ADD^ term)* ;

In Katahdin there is no concept of root nodes because an object is instantiated

for each matching rule. Instead of child trees, the object has fields that are

set to text values or other objects. Fields in the object are set with the :

field operator. This object-oriented approach to tree building in the grammar

reduces work for the author because they don’t have to think about how the

tree should be constructed and which token to make the root.

Figure 2.12 shows the add operator with its two operands labelled a and b.

With rules describing lexemes, the grammar writer will want the complete

text, not a list of characters. This is expressed with the token operator that

returns all the text that matched within it as a single value, as shown in figure

2.13.

2.3 Semantics

In most programming languages implementations, the parser produces a syn-

tax tree data structure by applying the grammar to the source text. The nodes

of the syntax tree are walked or visited by functions that either emit code that

executes, in the case of a compiler, or actually executes, in the case of an inter-

preter, the semantic meaning of each construct the programmer used. The tree

29

Figure 2.13: Use of the token operator in Katahdin

class Identifier {
pattern {

option whitespace = null;

text:token("a".."z")+

}
}

Figure 2.14: The factorial operator expressed in Katahdin as an expression

class FactorialExpression : UnaryExpression {
pattern {

option leftRecursive;

a:Expression "!"

}

method Get() {
return factorial(this.a.Get...());

}
}

walker is either written by hand or in a separate grammar2, so each construct’s

semantics are separated from the syntax.

In Katahdin each language construct is defined as a class with a rule. The

class is instantiated when the rule matches, with its fields set to values of

sub-expressions that matched. To add the semantic definition, the program-

mer defines methods in the class. For example, all expressions have a Get()

method that evaluates the expression. Figure 2.14 shows an implementation

of the factorial operator, where the Get() method calls the function that was

defined in figure 2.1. Note that when the Get() method is defined the oper-

ator isn’t declared yet, so we cannot define the factorial operator in terms of

itself and must call a recursive function.

The Get() method is an informal convention. Expressions also have a Set(v)

method for assignment, and statements have a Run() method that does not

return a value. Grammar writers are free to use any method convention that

they choose to implement their semantics.

Calls by a method such as Get() are often called in the parent’s scope. This is

expressed using the a...() call operator. Calling in the parent’s scope means

that variables the user referenced are resolved in the original method’s scope,

2In ANTLR a grammar can be defined to parse the tree data structure and perform actions

on each matched node.

30

Figure 2.15: Parsing algorithm for sequence expressions

define parse((e1, · · · , en), m, s)

p0 = p
t = new parse tree

for e ∈ (e1, · · · , en)
te = parse(e, m, s)

if te == fail

p = p0

return fail

else

t = t + te
end

end

return t
end

and not the scope of the method that implements the constructs semantics.

2.4 Parsing

The Katahdin grammar is parsed by a modified packrat parser. Unlike some

other grammars, TDPLs including PEGs describe the parsing algorithm. The

Katahdin grammar has some modifications that require more work, and these

are described below, but the basic parsing algorithm for the Katahdin grammar

is very simple.

Shown in figure 2.15 is the parsing algorithm for sequence expressions ex-

pressed in pseudo-code. Input to the function is the sequence of expressions,

(e1, · · · , en), the parser memory, m, and a state, s. The function stores the

current position of the parser in the source text, p, and creates a new parse

tree data structure, t.

For each expression e in the sequence, the parse function is called. If the

expression e fails to parse, the parser is returned to the position in the source

text it was at at the start of the function call, and the sequence expression fails,

returning an instance of the parse tree data structure that represents failure.

If the expression e matches, its parse tree is used to extend the sequence’s

parse tree, creating a list of matched values. If all expressions match, the

successful parse tree is returned.

You can see that if the expression e fails, all of the intermediate data is dis-

carded. The memoization part of the packrat parser is implemented elsewhere

and is described below.

31

Figure 2.16: Parsing algorithm for not-predicates

define parse(!e, m, s)

p0 = p
t = parse(e, m, s)

if t == fail

return succeed

else

p = p0

return fail

end

end

Figure 2.17: Parsing algorithm for and-predicates

define parse(&e, m, s)

p0 = p
t = parse(e, m, s)

if t == fail

return fail

else

p = p0

return succeed

end

end

The repetition expressions are defined like the sequence expression, except

that after a minimum number of repetitions if e fails, the function stops re-

peating and succeeds. If the minimum repetitions are not met, the function

fails.

Figures 2.16 and 2.17 show the parsing algorithm for the two predicate oper-

ators.

Figure 2.18 illustrates the packrat algorithm in the function that parses rules.

Passed to the function is the tuple, (r, e), the rule and its root expression. The

function creates a memory tuple key that combines the rule and the position

in the source code. Any application of rule r at position p will return the same

parse tree, so we look up the tuple key in the memory, m, before parsing. If

the memory contains a parse tree against the tuple key, it is returned. If not,

the rule’s root expression is parsed, and the result is stored in the memory and

returned, whether or not it succeeded in parsing. Storing a fail in memory is

no different to storing a success.

In Katahdin, the standard alternative expression, as expressed with the | oper-

32

Figure 2.18: Parsing algorithm for rules

define parse((r, e), m, s)

k = (r, p) Create a memory entry tuple key

if k ∈ m See if the tuple key is in the memory

return mk

else

t = parse(e, m, s)

mk = t Store the parse tree in memory by the tuple key

return t
end

end

ator, returns the longest match. Figure 2.19 shows the algorithm.

2.4.1 Parsing Recursion

The parser supports four kinds of recursion, set with the leftRecursive,

rightRecursive and recursive options. Rules have the recursive option

set by default, but this can be negated to make a rule non-recursive.

Non-recursive rules

When the recursive option is set to false a rule is non-recursive. The parser

function for rules is modified to enter each rule into an exclusion list when

it begins parsing the rule, and removing it after it has parsed. Before adding

to the list, the function checks if the rule is already in it. If so, the rule fails.

Figure 2.20 shows the modifications made.

Recursive rules

When the recursive option is set to true, as is the default, a rule is recursive,

and is not added to the exclusion list.

Right-recursive rules

Right-recursive rules, marked with the rightRecursive option, are parsed by

adding the constraint that a rule can only recurse into itself on the right-hand

side of the expression. Right-hand side can be simplified to anything beyond

the first node in a sequence.

33

Figure 2.19: Parsing algorithm for longest alternative expressions

define parse((e1| · · · |en), m, s)

p0 = p
plongest = 0 Variable for position of end of longest match

tlongest = 0
for e ∈ (e1| · · · |en)

te = parse(e, m, s)

if te 6= fail

if p > plongest If this e matched the most so far

plongest = p
tlongest = te

end

end

p = p0

end

if plongest > 0 If there was any match at all

p = plongest Move to the end of the longest match

return tlongest

else

return fail

end

end

Figure 2.20: Modification to parsing algorithm to support non-recursion

define parse((r, e), m, s)

· · ·
if r ∈ sexcluded

return fail

else

push(sexcluded, r)

t = parse(e, m, s)

pop(sexcluded

· · ·
end

end

34

Figure 2.21: Modification to parsing algorithm to support right-recursion

define parse((e1, · · · , en), m, s)

· · ·
for e ∈ (e1, · · · , en)
· · ·
if right-recursive

pop(sexcluded)

end

end

· · ·
end

The rule is parsed as if were non-recursive, with the algorithm shown in figure

2.20. However, the sequence parse function is modified to remove the rule

from the exclude list after the first node matches, as shown in figure 2.21.

For example, when parsing the source text a ^ b ^ ^ c, the parser would go

to match a power rule. The power rule is excluded, and then the first operand

is matched. As the power rule is excluded, only the identifier expression (a)

matches. The exclusion is then lifted and for the second operand the rule can

recurse and match another power rule, (b ^ c). The first call to the power

rule then matches (a ^ (b ^ c)).

This effectively implements the following pattern:

Power ← Number (‘^’ Power)?

Left-recursive rules

Left-recursive rules, marked with the leftRecursive option, are implemented

by parsing the rule as non-recursive, and then reapplying the rule with the

left-hand side set to the result of the previous match.

For example, when parsing the source text a + b + c, the parser disallows

recursion and the add rule matches (a + b). The add rule is then applied

again, using that result for the left-hand operator, instead of parsing from the

source text. From the second + operator the second invocation of the add rule

continues to parse normally, matching (a + b) + c).

This effectively implements the following pattern:

Add ← Number (‘+’ Number)*

Interestingly, this method of matching the operators from those furthest down

35

Figure 2.22: Demonstration of the dropPrecedence option

class Parentheses : Expression {
pattern {

option dropPrecedence;

"(" Expression ")"

}
}

the syntax tree first could be called a recursive-ascent parser, although the term

usually refers to a method of LR(0) parsing[17].

To implement this algorithm, left-recursive rules initially behave according

to the non-recursive algorithm. After successfully matching, they store the

result in the status to be used as the left-hand side, and call themselves again.

Rules check the left-hand side variable in the status, and if it is set and is of a

compatible type (if the rule is an expression, add and multiply rules in the left

hand side would be compatible as they are subclasses of expression), return

the left-hand side as if it had just been parsed.

2.4.2 Parsing Precedence

To implement precedence, the parser maintains a current precedence level.

When entering a rule the precedence level of the rule is compared to the

current level. Rules fail if they are not of higher precedence than the current

level. While parsing the rule, the precedence level is raised to that of the

rule. This prevents rules of a higher precedence matching operands that are

of lower precedence. For example, a multiply rule cannot have add rules as

its operands, as add has a lower precedence than multiply.

Some language constructs, such as parentheses, override precedence. The ex-

pression a * (b + c) overrides the normal precedence of operators by putting

the add operator in brackets as an operand to the mulitply operator. In

Katahdin this can be annotated with the dropPrecedence option that instructs

the parser to reset the current precedence level to zero, as show in figure 2.22.

Unlike standard PEGs, Katahdin uses a longest-match alternative operator, in-

stead of prioritised choice, however prioritised choice is used to solve a further

problem of precedence. Consider a grammar with add and subtract operators,

defined with lowest precedence, multiply and divide operators with higher

precedence, and numbers with highest precedence. The algorithm described

so far would restrict the operands of the add operator being either multiply,

divide or a number. With the Katahdin longest-match alternative operator, all

three rules would be tried before the longest being returned, however multiply

and divide have a higher precedence and so should be tried first, and if either

of those two match the alternative should return it. Only if both multiply and

36

divide fail should number be tried, as it has higher precedence.

To implement this, the alternative operator sorts the alternatives into groups

by precedence:

(add subtract) (multiply divide) number

The alternative groups are tried with a standard PEG prioritised choice algo-

rithm, but within each group the longest-match is taken.

This is also an optimisation – groups of rules that would fail the precedence

test if they were parsed can be quickly discarded rather than by testing each

rule.

37

CHAPTER 3

DESIGN AND IMPLEMENTATION

3.1 Prototyping

Katahdin development began with a prototype parser written in the Python

programming language. The grammar parser was created with the ANTLR

parser generator and then separate input files were parsed using the Katahdin

parser according to that grammar. Using this experience I produced a second

Python prototype, before starting development of the production implementa-

tion.

I also prototyped a simple programming language implementation using C♯
and the .NET platform, to see if it was a feasible option.

3.2 Platform

My parser prototypes were written in the Python language because it is a good

rapid application development tool, with high level constructs and dynamic

typing. However, Python’s runtime speed performance is low and the scripting

nature of the language means that it is not best suited for large-scale systems

software such as Katahdin.

My requirements for a platform were:

• Runtime speed performance The platform has to run reasonably fast,

as Katahdin was not designed with performance as a goal, a fast base

was needed to build on.

• Dynamic code generation In order to achieve reasonable speed, I wanted

to compile the parser as described later. This requires that the platform

has some facility for dynamically generating code that can be executed

as fast as the compiled interpreter.

• Available languages As has been described, the choice of a traditional

platform dictates which languages can be use. I needed a language that

I was proficient in, or that would be easy for me to learn.

• General purpose features Katahdin will be used to implement the se-

mantics of many languages, so a platform that is too specialised might

38

not have the features needed for some languages. For example, the Ruby

platform has very poor threading support, so implementing languages

that have powerful threads would be hard.

3.2.1 Platform Options

New platform from scratch

One option was to use a compiled programming language and develop my

own platform from scratch. This would have given me lots of freedom to

implement the system without restricting it to fit in the features of a platform.

Libraries could have been used for basic data structures and facilities such as

garbage collection, so I don’t think that development time would have suffered

significantly.

Languages such as C that allow programmers to directly access memory and

the system API can easily generate compiled machine instructions at runtime.

However, researching how to write and encode machine instructions would

be very time consuming, and I personally use a different hardware architec-

ture to the departmental lab computers so the work would be duplicated. One

possibility would be the libjit[1] library from Southern Storm Software, which

provides a well developed C interface for compiling bytecode to machine in-

structions for several architectures.

Apart from C I also considered writing a platform in C++ and Objective-C.

I finally rejected the idea because I thought that bringing together lots of dif-

ferent libraries to develop a new platform would be too cumbersome, and I

wanted well developed, integrated platform.

Java

The Sun Microsystems Java platform is a virtual machine for compiled byte-

code, often written using the Java programming language. Java is fast, has a

huge standard library of data structures and utilities and is easy to use, with

exception handling and garbage collection.

There are several interpreters available for the Java platform that use code

generation, such as Jython, but the method used is impractical. The inter-

preter manually writes a Java class file to a data stream that is then read as if

it was loading a file from disk. The interpreter has to perform the instruction

encoding and the smallest unit of code that can be dynamically generated is a

complete class definition.

I rejected Java because of its poor support for dynamic code generation.

39

.NET

The Microsoft .NET platform was created as a competitor to Java and is ex-

tremely similar in design and application. Like Java it is fast, has a good stan-

dard library, exception handling and garbage collection. The C♯ language is

the .NET equivalent of the Java language. Unlike Java, .NET and C♯ are inde-

pendently standardised as the Common Language Infrastructure (CLI), ECMA-

334 and ECMA-335.

Most importantly, .NET includes excellent support for dynamic code genera-

tion. The standard library includes a high level interface for emitting bytecode

instructions in blocks as small as standalone methods, using the

System.Reflection.Emit API.

I chose to develop Katahdin using the .NET platform and the C♯language be-

cause of the speed, the good standard library including support for dynamic

code generation, and because I am personally experienced using .NET and C♯.

However, I did not use the Microsoft implementation of .NET because it is

not available for the Linux or Apple MacOS X operating systems which I use.

Instead I used the popular and mature Novell implementation, Mono[2].

3.2.2 Version Control

Throughout development I used the Bazaar[3] distributed version control sys-

tem. Version control allowed me to track the changes that I made and reverse

them when I wanted to. I also used Bazaar as a synchronisation tool between

the departmental laboratory and my own computer, and as a daily form of

backup. Unlike CVS and Subversion, Bazaar is distributed, with each checkout

having a complete copy of the revision history, and so allowed me to work

off-line.

The log of my version control commits has been electronically submitted.

3.3 Implementation

My implementation of the Katahdin language interpreter is intended as a pro-

duction quality software system. The current status is described in detail in the

next chapter, but as an overview the implementation is a large but mature and

stable piece of software of over 19,000 lines of code. There is a lot of missing

minor functionality that would be trivial to implement but has never been ex-

ercised by a test program or demonstration and so has not been looked at yet.

For example, conversion is undefined between many types, some operators

can only be applied to certain types, and so on.

Work is also needed on areas including performance and error handling. These

are described in the next chapter.

40

Figure 3.1: Example Katahdin syntax tree

3.4 Implementation of the Language

The implementation of the Katahdin language, beyond the parsing stage, is

similar to most traditional interpreted languages. The actual Katahdin exe-

cutable is a command-line program that accepts a list of files to interpret. The

standard library is prepended to this list unless explicitly turned off.

$ katahdini program.kat

Each file is parsed by the Katahdin parser, producing a syntax tree data struc-

ture. Unlike most traditional language implementations, the syntax tree is

strongly typed. Figure 3.1 shows the Katahdin syntax tree data structure for

the statement print a + 14;. Each node in the tree is an instance of the class

that defined the matched rule. Children are referenced by fields in the objects.

The leaf objects are standard String and Int32 nodes.

To execute a program expressed in a syntax tree, the program is translated to

a code tree. While the syntax tree expresses the program, the code tree ex-

presses how to execute it. This data structure has nodes that perform the se-

mantic operation of each construct in the syntax tree. Each node in the syntax

tree has a BuildCodeTree() method to generate the code tree for that node,

and nodes with children recursively call the child nodes’ BuildCodeTree()

method and combine the trees.

When defining new language constructs the Run(), Get() and Set() meth-

ods, as described in 2.3, effectively implement BuildCodeTree(). However,

instead of the grammar writer creating and returning a code tree, the code

tree of the method itself is returned.

41

The code tree is then either evaluated, by walking the tree, or stored for eval-

uation later if the code tree is the body of a function or method.

3.5 Implementation of the Parser

As a rule is defined, an expression tree data structure is created. Each operator

in the Katahdin grammar has a corresponding class in the parser. Each class

has a Parse() method which implements the Katahdin parsing algorithm and

returns a parse tree data structure.

To parse each input file the root rule is applied by calling its Parse() method.

As the expression tree is walked through the mutually recursive calls to the

nodes’ Parse() methods, the grammar is applied to the source text and the

parse tree is built up. If the root rule fails, or the grammar does not parse up

to the end of the source text, an error is detected.

Shared parsing data structures such as the memory, the exclude list and the

left-hand side are passed to methods in a ParserState data structure. The

memory is a key data structure for performance. While running my simple

demo programs the memory contains several thousand intermediate parse

trees, and a look-up is performed in the Parse() method every time the parse

tries to apply a rule. I used a hash map data structure, with the key being a

non-linear combination of the rule’s unique identifier and the position within

the source text.

3.5.1 Compiling the Parser

The implementation of the parser as described above is fast enough to be use-

able, but is still very slow because of the huge number of method calls and the

generic implementation of the methods that have to work for all parameters.

To improve performance I applied a technique from traditional development

tools – the parser generator. A parser generator takes a grammar definition

and produces a program to parse it. This is faster because the overhead of the

code to walk the grammar data structure is removed and instead of a method

call per expression, a single method can parse an entire rule. Also, the imple-

mentation of each expression node can be changed based on the parameters.

For example, a compiled zero-or-more repetition node can entirely omit the

code to check the minimum number of repetitions.

In Katahdin the parser just-in-time compiles the expression tree of each rule

into a single method of .NET bytecodes. The .NET runtime compiles the byte-

code to the machine instructions of the hardware architecture and creates a

callable method object.

The parser compiler is a just-in-time compiler because each rule’s method is

compiled only as it is called for the first time. This is implemented using a

42

trampoline method that calls the compiler the first time, and calls the method

from there on in. If the grammar changes, with the definition of a new rule

or a change in the precedence, all affected rules have their compiled methods

discarded and their trampolines reset, ready to be compiled again the next

time they are called.

The compiled grammar reduces runtime for the

demos/fortran-python/fusion.kat demonstration program from 4 minutes

40 seconds down to 26 seconds, a 90% reduction.

There is potential for the application of adaptive optimisation[5] here. The

compiled rules could be instrumented with a profiler and the most frequently

called or slowest rules recompiled with more aggressive, time consuming op-

timisations. The Java Hotspot virtual runtime uses this technique.

3.6 Implementation of the Debugger

The Katahdin debugger is a graphical interface for viewing the internal data

structures of the Katahdin interpreter. I found it impractical to use a standard

debugger to understand why the parser failed when it did. Usually it involved

the interaction of several very large data structures and errors were easier to

spot if I could control the amount of data by displaying it in a tree form, able

to collapse and expand branches.

The debugger also has a trace feature, which creates a tree of all the rule calls

and the evaluation of every operator as the parser runs. This makes it very easy

to see where the parser took a wrong turn. The screenshot in figure 3.2 shows

how much information the debugger gives you. You can see the grammar, with

the tree of expression operators, the parse tree which shows the output data

structure from the parser, and the parse trace. In the parse trace you can see

how the parser has applied the Whitespace rule between tokens in the print-

statement, which were not referenced in the original grammar, but have been

automatically inserted. You can also see the runtime object window, which

lets you examine all objects used by the interpreter.

The user interface is written using Gtk♯, a C♯ binding of the Gtk+ library.

Currently, the debugger does not work with the just-in-time compiler for the

parser, and so is very slow.

The Katahdin debugger currently has no tools for debugging code running in

Katahdin – it is a debugger for Katahdin, not a debugger for Katahdin pro-

grams. However, it could be extended to provide this functionality.

3.7 File Handling

Files to be interpreted are passed to Katahdin on the command line. Large pro-

grams will be broken down into many files and libraries will always be written

43

Figure 3.2: Screenshot of the Katahdin debugger

in separate files. A program can instruct the runtime to interpret another file

using the import statement, similar to #include in C, but not unlike imports

in Java and using in C♯ which just reference namespaces for resolving type

names.

import "second-file.kat";

To find a file that is imported, Katahdin searches a list of directories, beginning

with the same directory as the importing file and then moving to the list of

directories specified by the environment variable $KATAHDIN, defined with the

same format as the system $PATH variable.

3.8 Standard Library

The Katahdin standard library is automatically imported as the interpreter

starts and defines data structures and higher level language constructs in

terms of the base language. The standard library also provides a utility layer

between Katahdin and the features of the underlying .NET platform. For ex-

ample, the subscript operator defined in library/subscript.kat is defined

for several different .NET interfaces so that it can be used with as many .NET

types as possible.

Figure 1.1 in chapter 1 shows an the definition of the for-statement taken

straight from the standard library.

44

3.9 Language Modules

A language definition module in Katahdin is a module that defines all of the

language constructs used in a language.

There are several ways to use a language module. One option is to use the

Katahdin runtime as if it were an interpreter for another language. The stan-

dard library includes a directory of file extensions and associated language

modules in library/languages.kat. If a file is imported that does not have a

.kat extension, the runtime will look up the language module to load and use.

Files written in any language that is listed in the directory can then be run by

the Katahdin interpreter:

./katahdini katahdin.kat python.py fortran.f

Another way to use a language module is to import the module and then use

the language only within part of the file. The language modules all define a

new Katahdin language statement that switches language just for the contents

of a pair of curly braces, as shown in figure 1.2 in chapter 1, and below:

import "python.kat";

python {
Python code here...

}

Finally, language modules can define a finer integration between two lan-

guages. For example, the language definition module for SQLite, an embed-

ded database, defines an expression that runs an SQL expression against a

database connection object. The module defines the Katahdin language ex-

pression shown in figure 3.3. This allows SQL code to be written in the same

line as Katahdin code:

database = new Mono.Data.SqliteClient.SqliteConnection(· · ·);

database.Open();

database? insert into films values(

"Indiana Jones and the Last Crusade",

1989, "Steven Spielberg");

print database? select director from films

where title = "Indiana Jones and the Last Crusade"

So far, I have developed language definition modules for a subset of the FOR-

TRAN, Python and SQLite languages. Although the features implemented by

45

Figure 3.3: The SqliteExpression

class SqliteExpression : Expression {
pattern {

option recursive = false;

database:Expression "?"

statement:Sqlite.Statement

}

method Get() {
// Evaluate the operands

database = this.database.Get...();

sql = this.statement.GetSql...();

// Execute the command

command = database.CreateCommand();

command.CommandText = sql;

reader = command.ExecuteReader();

// Read each row into a list

rows = [];

while (reader.Read()) {
row = [];

for (n = 0; n < reader.FieldCount; n++)

row.Add(reader.GetValue(n));

rows.Add(row);

}

return rows;

}
}

precedence SqliteExpression > CallExpression;

46

these modules are minimal, they are written without hacks and show that a

full language could be defined. Writing the modules helped me work out a lot

of the problems in my design, as I was seeing how it would actually be used.

For example, the off-side rule in Python (scope set by the indentation, as de-

scribed in chapter 2) required parsing the white-space at the start of a line,

instead of ignoring it as the Katahdin language does. If I had simplified the

parsing problem by always ignoring white-space, this would not have been

possible.

FORTRAN was an interesting language to implement because all subprograms

are defined as call-by-reference, passing pointers to the variables that you pass

as parameters instead of their values. This was totally different behaviour to

the language I was using to write the module, Katahdin, but I was able to

model the behaviour successfully. I was also able to make FORTRAN’s calling

convention work well with other languages. Figure 1.2 in chapter 1 shows a

Python program calling a FORTRAN subprogram, passing Python parameters in

as normal, where they are turned into references by the called FORTRAN sub-

program. Both the Python and FORTRAN programmers write their programs

as they expect for their languages and Katahdin handles the interoperability.

3.10 Testing

Early on in development Katahdin suffered from regressions, where the parser

worked for a particular input, but then I moved onto developing a different

area and made changes to the parser behaviour that broke it for the previous

input. As by then I was running with different input, I didn’t notice the error.

To combat this I set up a permanent library of unit-test routines, grammars

and source text inputs that I ran automatically before each version control

submission. As a result, I rarely had broken code in version control and I

could modify the parser freely, knowing that I could very quickly verify that

what I had done didn’t break anything.

I also used the test library as a performance metric while experimenting with

optimisation techniques.

47

CHAPTER 4

CURRENT STATUS AND FUTURE PLANS

4.1 State of Implementation

The Katahdin concept has been proven and the implementation is mature and

stable. The current Katahdin code base will provide a solid base on which to

solve the remaining problems to make Katahdin ready for production use.

4.2 Unsolved Problems

4.2.1 Memory Consumption

Memory consumption is high in Katahdin, consuming up to 50 MB of private

address space when running my demo programs. I am not too concerned

about memory consumption as the design already makes the conscious deci-

sion to use the packrat algorithm that uses a lot of memory in a trade-off for

speed, and this trade-off can be tweaked to reduce the memory used.

Memory consumption would be a problem if I wanted to run Katahdin on

smaller mobile or embedded devices. The Mono platform runs well on many

such devices, so if memory consumption could be reduced, it would be pos-

sible to use Katahdin as a runtime for the mobile and embedded devices that

Java already targets. This would be an excellent business opportunity, as it

would allow developers to use existing languages on mobile and embedded

devices, without having to port each of their runtimes.

Many of the speed optimisation issues discussed below also affect memory

consumption.

4.2.2 Speed

The speed of the Katahdin interpreter is the biggest problem. Currently the

interpreter takes about fifteen seconds to parse the standard library at start-

up, where most interpreters start instantly. Although this may not seem a lot,

it makes Katahdin unsuitable for applications where a program may be run

many times for little jobs, as in shell scripting or traditional CGI web services.

48

However, the optimisation strategies that have been tried so far, such as just-

in-time compiling the parser, have been very successful and I am confident that

performance could be drastically improved if development was focused on this

goal. Techniques such as adaptive optimisation have already been described,

but time would also be well spent tidying up the existing implementation to

look for obvious optimisation opportunities.

Other people have examined the speed performance of packrat parsers applied

to PEGs and found them acceptable. The Rats! implementation has been

found to outperform some traditional LR(k) parser generators[13].

4.2.3 Error Handling

Error handling is an issue that I have not touched on at all. A source text

will either parse according to a PEG or it will fail, and if it fails it is very hard

to work out what the problem was. Ideally, a language implementation that

detects an error should report the position, a description of the error, a guess

at what caused it and a suggestion of what to do.

Traditional grammars can do this because they use look-ahead to decide which

route to take, and then commit to that route. If a rule fails it is an error. In

a PEG, failure is a normal part of operation because the decision of which

route to take is made based on finding out which doesn’t fail. If there was an

error with a missing semicolon at the end of a statement in a function in a

traditional runtime, the compiler would know that it was parsing a statement

and that there should be a semicolon and so would report an error. In the

same situation a PEG parser would see that there wasn’t a semicolon and so

the statement rule would fail, the function rule would also fail because it could

not pass a statement, and finally the root rule would fail and the parser would

report that source text failed.

Although Katahdin has the ability the report the position of the furthest char-

acter that was parsed, and what the parser was trying to match at that point,

serious error handling would need further research and concentrated devel-

opment to implement, and is a critical feature that needs to be in place before

Katahdin could be used in production.

4.3 Future Development

4.3.1 Debugger

To be useable for serious development Katahdin needs a custom debugger.

This could be built from the internal debugger that I described in 3.6 but

would still be a substantial development project. At present there is no way

to step through Katahdin statements, set breakpoints or examine the stack.

These are all more complicated operations in Katahdin than other language

49

implementations because there is no line between the programmer’s code and

the implementation of the language they are using. For example, a raw stack-

trace would show all the method calls that implement language constructs as

low level as for-statements, which the programmer might or might not care

about. The stack-trace of a program written in a language defined in terms of

another language that was then defined in the Katahdin base language would

be unreadable, as each language construct used would result in several calls

on the stack.

4.3.2 Language Modules

Ideally, Katahdin needs a large library of well written language definition mod-

ules that interoperate well. My business model is to provide general consulting

services, so over time the library would grow as we work with clients using

more languages, but a minimal standard library of languages would be needed

to start promoting Katahdin.

The language definitions of Python and FORTRAN should be developed until

they can run off the shelf applications. Test suites are available for both of

these languages that could be used to verify our language definitions. I would

then move on to develop language definition modules for languages widely

used in industry such as Java and Visual Basic.

As Katahdin will be released as open source, it is hoped that a community of

developers can be created to develop and share new language constructs and

language definitions.

4.4 Conclusion

Katahdin has been a successful and rewarding project that has taken recent

and active research from several people and applied it in a new direction to

create a unique software development tool. The original aim of creating a pro-

gramming language where the syntax and semantics are mutable at runtime

has been achieved. With a strong theoretical background and a mature, stable

and easily demonstrated implementation, Katahdin could be ready for use in

production systems with a year’s further development.

Ford’s opinion is that the ”expressiveness of PEGs . . . introduces new syntax

design choices for future languages”[11] and perhaps the next generation of

languages could be developed as language modules on top of Katahdin.

50

BIBLIOGRAPHY

[1] http://www.southern-storm.com.au/libjit.html. Accessed May 2007.

[2] http://www.mono-project.com/. Accessed May 2007.

[3] http://bazaar-vcs.org/. Accessed May 2007.

[4] Ravi Sethi Alfred V. Aho, Monica S. Lam and Jeffrey D. Ullman. Compilers,

Principles, Techniques, and Tools. Second edition, 2007.

[5] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F.
Sweeney. Adaptive optimization in the Jalapeño JVM. ACM SIGPLAN Notices,
35(10):47–65, 2000.

[6] Alexander Birman. PhD thesis, 1970.

[7] Alexander Birman and Jeffrey D. Ullman. Parsing algorithms with backtrack.
Information and Control, 23, 1973.

[8] Noam Chomsky. Three models for the description of language. IRE Transactions

on Information Theory, IT2:113–124, 1956.

[9] Bryan Ford. Master’s thesis, 2002.

[10] Bryan Ford. Packrat parsing: Simple, powerful, lazy, linear time. Symposium on

Principles of Programming Languages, 2002.

[11] Bryan Ford. Parsing expression grammars: A recognition-based syntactic foun-
dation. Symposium on Principles of Programming Languages, 2004.

[12] Masaharu Goto. The cint c/c++ interpreter. http://root.cern.ch/root/

Cint.html. Accessed May 2007.

[13] Robert Grimm. Better extensibility through modular syntax. Programming Lan-

guage Design and Implementation, 2006.

[14] Stephen C. Johnson. Unix Programmer’s Manual, 1979. Yacc: Yet Another
Compiler-Compiler.

[15] Donald E. Knuth. Semantics of context-free languages. Mathematical Systems

Theory, 2(2):127–145, 1968.

[16] Peter J. Landin. The next 700 programming languages. Commun. ACM,
9(3):157–166, 1966.

[17] René Leermakers. Non-deterministic recursive ascent parsing. In Proceedings

of the fifth conference on European chapter of the Association for Computational

Linguistics, pages 63–68, Morristown, NJ, USA, 1991. Association for Computa-
tional Linguistics.

[18] Terence J. Parr and Russell W. Quong. Adding semantic and syntactic predicates
to LL(k): pred-LL(k). In Computational Complexity, pages 263–277, 1994.

[19] Roman R. Redziejowski. Parsing expression grammar as a primitive recursive-
descent parser with backtracking. Proceedings of the Concurrency Specification

and Programming Workshop, 2007.

51

