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Abstract
Most high-performance dynamic language virtual machines
duplicate language semantics in the interpreter, compiler,
and runtime system. This violates the principle to not repeat
yourself. In contrast, we define languages solely by writing
an interpreter. The interpreter performs specializations, e.g.,
augments the interpreted program with type information and
profiling information. Compiled code is derived automati-
cally using partial evaluation while incorporating these spe-
cializations. This makes partial evaluation practical in the
context of dynamic languages: It reduces the size of the
compiled code while still compiling all parts of an operation
that are relevant for a particular program. When a specula-
tion fails, execution transfers back to the interpreter, the pro-
gram re-specializes in the interpreter, and later partial eval-
uation again transforms the new state of the interpreter to
compiled code. We evaluate our approach by comparing our
implementations of JavaScript, Ruby, and R with best-in-
class specialized production implementations. Our general-
purpose compilation system is competitive with production
systems even when they have been heavily optimized for the
one language they support. For our set of benchmarks, our
speedup relative to the V8 JavaScript VM is 0.83x, relative
to JRuby is 3.8x, and relative to GNU R is 5x.

CCS Concepts •Software and its engineering → Run-
time environments

Keywords dynamic languages; virtual machine; language
implementation; optimization; partial evaluation

1. Introduction
High-performance virtual machines (VMs) such as the Java
HotSpot VM or the V8 JavaScript VM follow the design that
was first implemented for the SELF language [25]: a multi-
tier optimization system with adaptive optimization and de-
optimization. The first execution tier, usually an interpreter
or fast-compiling baseline compiler, enables fast startup. The
second execution tier, a dynamic compiler generating opti-
mized machine code for frequently executed code, provides
good peak performance. Deoptimization transitions execu-
tion from the second tier back to the first tier, i.e., replaces
stack frames of optimized code with frames of unoptimized
code when an assumption made by the dynamic compiler no
longer holds (see Section 5.2 for details).

Multiple tiers increase the implementation and mainte-
nance costs for a VM: In addition to a language-specific op-
timizing compiler, a separate first-tier execution system must
be implemented [2, 4, 23]. Even though the complexity of
an interpreter or a baseline compiler is lower than the com-
plexity of an optimizing compiler, implementing them is far
from trivial [48]. Additionally, they need to be maintained
and ported to new architectures. But more importantly, the
semantics of the language need to be implemented multi-
ple times in different styles: For the first tier, language op-
erations are usually implemented as templates of assembler
code. For the second tier, language operations are imple-
mented as graphs of language-specific compiler intermedi-
ate representation. And for the runtime system (code called
from the interpreter or compiled code using runtime calls),
language operations are implemented in C or C++.

We implement the language semantics only once in a
simple form: as a language interpreter written in a man-
aged high-level host language. Optimized compiled code is
derived from the interpreter using partial evaluation. This
approach and its obvious benefits were described in 1971
by Y. Futamura [15], and is known as the first Futamura
projection. To the best of our knowledge no prior high-
performance language implementation used this approach.
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We believe that a simple partial evaluation of a dynamic
language interpreter cannot lead to high-performance com-
piled code: if the complete semantics for a language oper-
ation are included during partial evaluation, the size of the
compiled code explodes; if language operations are not in-
cluded during partial evaluation and remain runtime calls,
performance is mediocre. To overcome these inherent prob-
lems, we write the interpreter in a style that anticipates and
embraces partial evaluation. The interpreter specializes the
executed instructions, e.g., collects type information and
profiling information. The compiler speculates that the inter-
preter state is stable and creates highly optimized and com-
pact machine code. If a speculation turns out to be wrong,
i.e., was too optimistic, execution transfers back to the in-
terpreter. The interpreter updates the information, so that the
next partial evaluation is less speculative.

This paper shows that a few core primitives are sufficient
to communicate information from the interpreter to the par-
tial evaluator. We present our set of primitives that allow us
to implement a wide variety of dynamic languages. Note that
we do not claim that our primitives are necessary, i.e., the
only way to make partial evaluation of dynamic language
interpreters work in practice.

Closely related to our approach is PyPy [6, 8, 39], which
also requires the language implementer to only write an
interpreter to express language semantics. However, PyPy
does not use partial evaluation to derive compiled code from
the interpreter, but meta-tracing: a trace-based compiler ob-
serves the running interpreter (see Section 9 for details).

In summary, this paper contributes the following:

• We present core primitives that make partial evaluation
of dynamic language interpreters work in practice. They
allow a language-agnostic dynamic compiler to generate
high-performance code.

• We present details of the partial evaluation algorithm and
show which compiler optimizations are essential after
partial evaluation.

• We show that our approach works in practice by compar-
ing our language implementations with the best produc-
tion implementations of JavaScript, Ruby, and R.

2. System Structure
We implement many different guest languages in a man-
aged host language. Only the interpreter and the runtime
system for a guest language is implemented anew by the
language developer. Our framework and the host language
provide a core set of reusable host services that do not need
to be implemented by the language developer, such as dy-
namic compilation (the focus of this paper), automatic mem-
ory management, threads, synchronization primitives, and a
well-defined memory model.

For the concrete examples and the evaluation of this pa-
per, we implemented multiple guest languages (JavaScript,

Ruby, and R) in the host language, Java. We require only one
implementation for every guest language operation. Since
the interpreter and the runtime system are written in the same
managed host language, there is no strict separation between
them. Regular method calls are used to call the runtime from
the interpreter.

Optimized compiled code is inferred from the interpreter
using partial evaluation. Partial evaluation (PE) is the pro-
cess of creating the initial high-level compiler intermedi-
ate representation (IR) for a guest language function1 from
the guest language interpreter methods (code) and the inter-
preted program (data). The interpreted program consists of
all the data structures used by the interpreter, e.g., interpreter
instructions organized as an abstract syntax tree. The lan-
guage implementer does not have to provide any language
specific input to the language-independent optimizing com-
piler. Section 5.1 provides details of our PE process.

In dynamic languages, the full semantics of seemingly
simple operations are complex. For example, addition in
JavaScript can be as simple as the addition of two numbers.
But it can also be string concatenation as well as involve the
invocation of complex conversion functions that convert ar-
bitrary object inputs to numbers or strings. Addition in Ruby
can again be just the addition of two numbers, but also the
invocation of an arbitrary addition method that can be rede-
fined at any time. Addition in R can be just the addition of
two vectors of numbers, but also involve a complex method
lookup based on the classes of its arguments. We claim that
a simple PE that always captures the full semantics of every
operation in compiled code is infeasible: it either leads to
code explosion if all code for the operation is compiled, or
mediocre performance when only parts of the operation are
compiled and runtime calls remain in the compiled code for
the full semantics.

We solve this problem by making the interpreter aware
of PE using core primitives. The remainder of this section
is a high-level description of the most important primitives,
with forward references to Section 3, which defines all core
primitives in detail.

Figure 1 illustrates the interactions of interpreter code,
compiled code, and runtime code. The interpreter methods
a to d call each other, and call the runtime methods e to
i. Two guest language functions x and y are compiled. The
core primitive to initiate PE (see Section 3.1) starts PE at the
same interpreter method a, but then processes different inter-
preter methods that are in different specialization states. We
denote the different specialization states using subscripts,
e.g., bx1 denotes one specialization state of b for function
x. The compiled code does not contain calls to any inter-
preter methods anymore. PE stops at calls to the runtime,
i.e., calls to methods that are annotated with the core primi-
tive PEBoundary (see Section 3.4).

1 To distinguish the languages in this paper, function always refers to the
guest language while method always refers to the host language
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Figure 1: Interactions of interpreter code, compiled code,
and runtime code.

While interpreting an operation, the interpreter special-
izes the instructions, e.g., collects type information or pro-
filing information. In other words, for each instruction the
interpreter stores which subset of the semantics is actu-
ally used. PE uses the specialization information. For this,
the instructions are assumed to be in a stable state where
subsequent changes are unlikely, although not prohibited.
PE eliminates the interpreter dispatch code access of stable
state: PE eliminates the load of a field annotated with the
core primitive PEFinal by replacing the field load with a
constant for the read (see Section 3.2).

The parts of the interpreter code responsible for special-
ization and profiling are omitted from compilation: The core
primitive transferToInterpreter (see Section 3.2) is a
function that causes a transfer from optimized machine code
back to the interpreter. This results in machine code that is
aggressively specialized for the types and values encoun-
tered during interpretation. The transfer back to the inter-
preter discards the optimized machine code. During inter-
pretation, the interpreter updates the specialization, e.g., in-
corporates revised type information. The function can be
compiled again using PE, with the new specializations con-
sidered stable by the compiler. In the example in Figure 1,
methods like bx1, by1, and dx1 are specialized in the com-
piled code, i.e., the compiled code omits some parts of meth-
ods b and d. Execution transfers to the interpreter in case
these parts are executed at run time. PE is an expensive op-
eration, therefore waiting for a stable state before initiating
PE is important to avoid repeated PE of the same function.

Optimized compiled code can also be specialized on
global information maintained by the runtime. When such
information changes, the compiled code is discarded using
the core primitive Assumption (see Section 3.3). There-
fore, no code needs to be emitted by the compiler to check
the validity of an assumption.

Our transfer to interpreter is implemented in the VM
via deoptimization [25]. Deoptimization replaces the stack
frames of optimized code with interpreter stack frames (see

Section 5.2). It is provided by our framework to the guest
language implementer as an intrinsic method, i.e., a method
of the host language that is handled specially by the com-
piler.

Note that at no point was the dynamic compiler modified
to understand the semantics of the guest language; these
exist solely in the high-level code of the interpreter, written
in the host language. The guest language developer gets
a high-performance language implementation, but does not
need to be a compiler expert.

The language implementer is responsible for complete-
ness and finiteness of specializations. In a particular special-
ization state, an operation may handle only a subset of the
semantics of a guest language operation. However, it must
provide re-specialization for the complete semantics of the
operation. After a finite number of re-specializations, the op-
eration must end up in a state that handles the full semantics
without further updates. In other words, there must be a state
that can handle all possible inputs. Otherwise, the process of
deoptimization, re-specialization, and compilation would go
on forever. Identifying and fixing repeated deoptimization
issues is challenging. To minimize the possibility of errors,
we provide a higher-level API that uses the core primitives
and is guaranteed to stabilize, for example, a domain-specific
language to express specializations [26].

3. Core Primitives for the Interpreter
We believe that an interpreter needs to be aware of PE so
that the compiler can create concise and efficient machine
code. We identified a small number of core primitives that
are sufficient to make the interpreter aware of PE.

3.1 Initiate Partial Evaluation
PE combines a method (code) with data. Figure 2 illustrates
how PE is initiated for a guest language function. The inter-
preter data structures, e.g., the interpreted instructions, are
reachable from fields of a Function object. Calling the in-
stance method execute interprets the function. The input
to PE is a reference to this function (code), and a concrete
Function object (data). See Section 5.1 for details on how
the PE algorithm traverses the method call graph and opti-
mizes access of the data objects. The result of PE is a handle
to optimized machine code for the guest language function.
It can be invoked like a static method that takes the same ar-
guments (the args array) as the execute method. Note that
Figure 2 is simplified and not valid Java code because Java
requires the use of reflection to search for a method.

A compilation policy decides which guest language func-
tions are compiled, based on execution count and other prop-
erties of a function. Since most dynamic languages work
well with the same compilation policy, a default implemen-
tation is provided by our framework to language imple-
menters, i.e., language implementers do not need to initiate
PE themselves.
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Object interpret(Function function, Object[] args) {
return function.execute(args);

}

Object compiled(Function function, Object[] args) {
MethodHandle code = partialEvaluation(

Function::execute, function);
return code.invoke(args);

}

Figure 2: Initiate partial evaluation.

3.2 Method-Internal Invalidation of Compiled Code
The interpreter collects information while interpreting a
function, stores this information in the instructions (i.e.,
instructions are a mutable data structure), and makes the
information available to the compiler. Compiled code spec-
ulates that the information is stable, i.e., speculates that the
information is not going to change in future executions. The
compiled code contains a check that the information is still
correct, but no code to handle incorrect information. Instead,
execution continues in (i.e., deoptimizes to) the interpreter.
The interpreter then updates the information and stores the
new value in the instructions. When the function is com-
piled again, the new information leads to code which is less
speculative.

The annotation PEFinal on a field instructs PE that the
field is stable. PE treats the field like a final field, i.e., reads
the value, replaces the field load with a constant for the read
value, and performs constant folding. The interpreter is al-
lowed to write the field, but compiled code must not write
to it. Every write must be preceded by a call to the intrinsic
method transferToInterpreter. This intrinsic transfers
execution from optimized compiled code to the interpreter
and invalidates the compiled code. Execution does not con-
tinue in compiled code after the call to transferToInter-

preter, so dead code elimination removes all code domi-
nated by the method call.

Since compiled code is not allowed to write a PEFinal

field, PE could treat a write implicitly as a transfer to the
interpreter. We decided to use an explicit intrinsic method
because we believe it makes the interpreter code more read-
able. In addition, code that computes the new value of the
PEFinal field can also be excluded from PE, i.e., the call to
transferToInterpreter can be well before the write to a
PEFinal field.

Figure 3 shows an example for method-internal invalida-
tion of compiled code. We want to optimize the negation
operation of a JavaScript-like dynamic language. Any value
can be negated, but usually only numbers are. To create con-
cise and fast code, the compiler needs to omit the code for
the unlikely path. This reduces the code size, but more im-
portantly improves type information for subsequent opera-
tions: since the result of the negation is always a number, the
compiler can remove type checks on the result value.

@PEFinal boolean objectSeen = false;

Object negate(Object v) {
if (v instanceof Double) {

return -((double) v);
} else {

if (!objectSeen) {
transferToInterpreter();
objectSeen = true;

}
// slow-case handling of all other types
return objectNegate(v);

}
}

Figure 3: Method-internal invalidation of compiled code.

if (v instanceof Double)
return -((double) v);

else
deoptimize;

(a) objectSeen is false.

if (v instanceof Double)
return -((double) v);

else
return objectNegate(v);

(b) objectSeen is true.

Figure 4: Compiled parts of the example in Figure 3.

In the common case, the interpreter only encounters num-
bers, i.e., the value of the PEFinal field objectSeen is
false during PE. PE replaces the field load with the con-
stant false. Constant folding and dead code elimination
remove the call to objectNegate. The boxing and unbox-
ing operations between primitive double values and boxed
Double objects can be removed by the compiler because
the exact type of boxed values is known. Figure 4a shows
the code that gets compiled when objectSeen is false.
The call to transferToInterpreter is intrinsified to a
deoptimize runtime call that rewrites the stack and there-
fore does not return to the compiled code.

If negate is called with a non-number argument, the ma-
chine code cannot compute the result. Instead, the trans-

ferToInterpreter invalidates the machine code, and exe-
cution continues in the interpreter. The interpreter updates
objectSeen to true and performs the correct negation
operation. When negate is compiled again, the call to
objectNegate remains reachable. Figure 4b shows the
code that gets compiled when objectSeen is true.

In summary, the PEFinal field objectSeen is always
constant folded, i.e., there is no read of the field in compiled
code. The write is after a call to transferToInterpreter,
so there is no write of the field in compiled code. Note that
objectSeen is an instance field. Every negation operation
in an application has a separate instruction object for the
negation, so each negation is specialized independently.

3.3 Method-External Invalidation of Compiled Code
The runtime system of a language collects global informa-
tion about loaded guest language code, stores this informa-
tion in global data structures, and makes the information
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@PEFinal Assumption notRedefined = new Assumption();

int add(int left, int right) {
if (notRedefined.isValid()) {

return left + right;
}
... // complicated code to call user-defined add

}

void redefineFunction(String name, ...) {
if (name.equals("+")) {

notRedefined.invalidate());
... // register user-defined add

}
}

Figure 5: Method-external invalidation of compiled code.

available to the compiler. The compiler speculates that the
information is stable, i.e., optimizes the function as if the
information is not going to change in future executions. In
contrast to the core primitive of the previous section, the
compiled code does not contain a check that the informa-
tion is still correct. Since the information in the global data
structure can be changed at any time, there is no single point
within a function where a check could be placed. Perform-
ing a check repeatedly would lead to slow code. Instead,
the compiled code can be invalidated externally. When the
global information is changed, all compiled code that de-
pends on this information is invalidated. All stack frames of
all affected compiled functions are deoptimized.

Our implementation uses a class Assumption with an in-
trinsic method isValid. Every assumption has a boolean
field that stores whether the assumption is still valid. In the
interpreter, isValid returns this field so that the interpreter
can react to invalidated assumptions. The compiler intrinsi-
fies isValid to a no-op, i.e., no code is emitted for it. In-
stead, the compiler adds the compiled code to a dependency
list stored in the assumption object. If the assumption is in-
validated using invalidate, all dependent compiled code
is invalidated.

Figure 5 shows an example for method-external invali-
dation of compiled code. We want to optimize addition of
a Ruby-like dynamic language. Arithmetic operations on all
types can be changed by the application at any time, but usu-
ally applications do not change such basic operations. But to
guarantee correct language semantics, compiled code must
be prepared for a change to happen at any time, including
while evaluating the arguments for the addition. It is there-
fore not enough to check for redefinition once at the begin-
ning of the compiled code. Emitting machine code for the
check before every arithmetic operation would lead to an un-
acceptable slowdown. Therefore, we define an Assumption

that the addition has not been redefined. If the user has
not redefined addition, the compiler replaces the intrinsic
method isValid with the constant true. Constant folding
and dead code elimination simplify the if statement, so only
the simple and straight-line code left + right is com-

Object parseJSON(Object value) {
String s = objectToString(value);
return parseJSONString(s);

}

@PEBoundary
Object parseJSONString(String value) {

... // JSON parsing code
}

Figure 6: Explicit boundary for partial evaluation.

piled. No compiled code is emitted to check the validity of
the assumption. Instead, the compiler registers the optimized
code as depending on the assumption.

The runtime code that loads and registers new functions
checks if a newly defined function redefines the default ad-
dition operation. In this case, the runtime invalidates the
assumption. All compiled code that contains an addition
is invalidated, and execution continues in the interpreter.
The next time an addition is compiled, the intrinsic method
isValid is replaced with the constant false. Only the call
to the user-defined new addition operation is emitted by the
compiler.

3.4 Explicit Boundary for Partial Evaluation
PE traverses the call graph of the interpreter and includes all
interpreter methods reachable for a particular guest language
function. At some point traversal must stop, otherwise unim-
portant slow-path code would be compiled and the size of
the compiled code would explode. The stopping point sep-
arates the interpreter from the language runtime: everything
that is part of the interpreter is processed by PE, while calls
to the language runtime remain as calls. Remember that in
our system the interpreter and the language runtime are im-
plemented in the same host language. The language imple-
menter can freely decide where the boundary is, and move
the boundary easily by marking a method explicitly as the
boundary. We use the annotation PEBoundary to explicitly
mark boundaries.

Figure 6 shows an example for the boundary annotation.
A JavaScript-like language has a built-in function for parsing
JSON into an object graph. The function accepts any value
as an argument, but converts the argument to a string first be-
fore invoking the JSON parser on the string. In our example,
the PE boundary is placed after the to-string conversion, but
before the actual JSON parsing. This allows speculation and
type propagation for the to-string conversion: it is likely that
the compiler can infer types and optimize the conversion.
But the actual JSON parsing code remains behind a call.

It might be possible to find out boundaries automatically,
i.e., eliminate the need for the annotation. We experimented
with different heuristics and algorithms to detect boundaries,
but none of them resulted in intuitive and predictable re-
sults. We therefore removed all heuristics again and reverted
to explicit boundaries. In our example, the language imple-
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class UninitializedEntry {
}

class CacheEntry {
final Shape shape;
final Function target;
@PEFinal Entry next;

}

class GenericEntry {
}

class Invoke {
final String name;
@PEFinal Entry first;

}

Obj execute(Obj obj) {
transferToInterpreter();
... 
// lookup function
// add new CacheEntry
// invoke function

}
UninitializedEntry

Obj execute(Obj obj) {
if (obj.shape == shape) {

return target.invoke(obj);
}
return next.execute(obj);

}

CacheEntry

@PEBoundary
Obj execute(Obj obj) {

...
// lookup function
// invoke function

}

After Parsing 1 Function 2 Functions > 2 Functions

Invoke Invoke Invoke

CacheEntry

UninitializedEntry

Figure 7: Sketch for a polymorphic inline cache.

menter might find out, by analyzing real usages of JSON
parsing, that the to-string conversion cannot be optimized
by the compiler. Then the PE boundary can be moved to
the first method of the example. Or the language imple-
menter might find out that the actual JSON parsing code it-
self can benefit from type information and speculation. Then
the PEBoundary can be removed completely or moved in-
side of the JSON parsing code. The explicit annotation gives
the language implementer fine-grained control to incorpo-
rate knowledge how the language is used, i.e., knowledge
that is not present in the language implementation itself.

3.5 Distinguishing Interpreted Execution
Profiling code in the interpreter must be excluded during
compilation. The intrinsic method inInterpreter always
returns true in the interpreter, but is intrinsified to false.
Constant folding and dead code elimination remove all code
that is guarded using inInterpreter. Figure 8 in a later
section shows an example.

3.6 Modifying the Interpreter State of Caller Frames
Many dynamic languages have built-in functions that reflect
on the call stack, e.g., print the stack trace in case of excep-
tions or change local variables in activation frames down the
stack. The few frames that are written externally must be al-
located on the heap instead of on the stack, and the compiled
code of these functions cannot speculate on local variable
types since local variables are changed externally. However,
the language runtime does not know ahead of time which
frames will be written because arbitrary optimized frames
can be the subjects of inspection.

For example, Ruby’s regular expression match function
stores the result in a local variable named $~ in the caller
frame. This occurs in practice, e.g., when running the Dis-
course web forum application in its benchmark configuration
each request involves around 14k reads from and 11k writes
to a caller frame. To support this behavior, other implemen-
tations of Ruby either store all function activation frames on

the heap so that they can always be accessed (MRI and Ru-
binius), or try to analyze before compilation if a frame will
be written to (JRuby) and then use heap-based frames only
for such methods. In the case of JRuby this static analysis is
demonstrably unsound because functions can be aliased and
local variables accessed using meta-programming, defeating
the static analysis.

We provide the language implementer with an interpreter-
level view of all stack frames, with full support to read and
write local variables; but without any overhead for frames
that are not written to. The language implementer always
sees the interpreter-level state, i.e., a heap-based frame ob-
ject. By default, compiled code uses stack-based frames. The
same information that allows transferring to the interpreter
also allows inspecting optimized frames. If only read access
is necessary, the heap-based frame is temporarily restored in
a side data structure and read operations are performed as if
it was the real frame. This allows reflecting on the executed
function and reads without impacting the performance: when
control returns to the optimized code, the compiled frame is
still on the stack.

Write access to an optimized frame requires a transfer to
the interpreter for that particular activation. When control re-
turns to that function, execution continues in the interpreter
using the heap-based frame that was written to. Profiling in-
formation stores that the frame was written to from outside,
so that the next version of compiled code uses a heap-based
frame that can be written to externally.

4. Example Usages of the Core Primitives
This section uses the core primitives to implement higher-
level concepts used by many dynamic languages.

4.1 Polymorphic Inline Caches
Polymorphic inline caches optimize function and property
lookup in dynamic languages and are usually implemented
using assembler code and code patching [24]. Our system
supports them by chaining host-language objects represent-
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ing cache entries. For every new entry in the inline cache,
a new entry is added to the list. The cache entry checks
whether the entry matches. Then it either proceeds with the
operation specialized for this entry or delegates the handling
of the operation to the next entry in the chain. When the
chain reaches a certain predefined length, i.e., the desired
maximum cache size, the whole chain is replaced with one
entry responsible for handling the fully megamorphic case.

Figure 7 sketches a polymorphic inline cache for guest
language function invocation. The Invoke interpreter in-
struction stores the name of the invoked function and the
head of the entry list. Before the first execution, the only
entry in the list is the UninitializedEntry. Upon execu-
tion, it adds a new cache entry to the list, but remains at the
end of the list. The linked list uses PEFinal fields: the inter-
preter can change them, but PE sees them as constant. This
removes the dispatch overhead between cache entries. Each
CacheEntry caches the invoked function for a receiver ob-
ject type (usually called shape or hidden class). Checking
for a cache hit can be compiled to one memory load and one
comparison because final and PEFinal fields are constant
folded by the compiler.

When the cache exceeds the maximum desired size, the
whole list is replaced with a single GenericEntry that
performs a slow-path lookup of the function. This is usually
an expensive and complicated lookup, so it is a runtime call
behind a PEBoundary. It does not invalidate optimized code.
In contrast, the UninitializedEntry uses transferTo-
Interpreter to invalidate optimized code upon execution.
This ensures that the newly added cache entries are included
in the next compilation.

4.2 Typed Local Variables
Reading and writing local variables is performed by guest
languages via an index into a Frame object that contains an
array holding the values. Local variable access instructions
specialize on the type of a local variable. This allows for
dynamic profiling of variable types in the interpreter.

The performance of local variable access is critical for
many guest languages. Therefore, it is essential that a local
variable access in the compiled code after PE is fast. Escape
analysis (see Section 5.3) eliminates every access to the ar-
ray and instead connects the read of the variable with the last
write. Guest-language local variables have no performance
disadvantage compared to host language local variables. The
host compiler can perform standard compiler optimizations
such as constant folding or global value numbering for guest
language local variable expressions without a data flow anal-
ysis for the frame array. The actual frame array is never allo-
cated in the compiled code, but only during deoptimization.

4.3 Compilation of Loops
For long running loops it is beneficial to switch from the
interpreter to compiled code during the execution of the
loop. This kind of behavior is often referred to as on-stack-

class DoWhileLoop {
MethodHandle code = null;

void executeLoop() {
int loopCount = 0;
do {

if (inInterpreter()) {
loopCount++;
if (code == null && loopCount > THRESHOLD) {

code = partialEvaluation(
DoWhileLoop::executeLoop, this);

}
if (code != null) {

code.invoke();
return;

}
}

body.execute();
while (condition.execute());

}
}

Figure 8: Compilation of frequently executed loops.

replacement (OSR) for loops and usually requires non-trivial
changes to the optimizing compiler and the runtime sys-
tem [23]. Since PE can start at any place in the interpreter,
we implement compilation of loops with a few lines of code
in the interpreter.

Figure 8 shows how to invoke PE for a do-while loop.
The do-while loop instruction is implemented in the in-
terpreter using the do-while loop of the host language.
The loop body is executed as long as evaluating the loop
condition returns true, but at least once. If the loop ex-
ecution count exceeds an arbitrary but fixed threshold, PE
is initiated for the executeLoop method that is currently
running in the interpreter, i.e., with the current this pointer
as the data for PE. The intrinsic method inInterpreter

is intrinsified to false during PE, so the counting code is
excluded from compilation. The resulting compiled code is
invoked immediately and executes the remaining loop iter-
ations. Note that the interpreter frame remains on the stack
since the interpreter invokes the compiled code, which is dif-
ferent to other OSR implementations.

5. Implementation Details
5.1 Partial Evaluation of the Interpreter
PE builds the initial high-level compiler IR that is then the
input to the compiler. The input of PE is code and data. Code
denotes the interpreter methods written in the host language,
which are the same for all guest language functions. Data
denotes the interpreter data structures for the guest language
function that is compiled: the actual interpreted instructions
together with profiling information collected by the inter-
preter.

Our PE algorithm follows the standard approach for on-
line PE [27]. It starts with the first instruction of the inter-
preter method passed to PE. This method has two kinds of
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arguments: 1) the object that references all the interpreter
data structures, and 2) the actual user arguments. For PE of a
function, the first kind of argument is a constant Function
object for that particular function. Based on this initial con-
stant, virtual method calls performed by the interpreter can
be de-virtualized, i.e., converted from indirect calls to direct
calls with a known exact target method.

PE follows all direct calls: instead of emitting a call in-
struction, the called method is processed recursively. Mem-
ory loads are constant folded immediately during PE: if the
receiver of a memory load is a constant object and the ac-
cessed field or memory element is considered as immutable,
the read is performed during PE and the result of the read is
another constant. Constant folding replaces arithmetic and
comparison operations with constants when all inputs of the
operation are constant. Dead code elimination replaces if-
statements whose condition is a constant with a branch to
the single reachable successor. The dead branch is not vis-
ited during PE, i.e., instead of parsing all branches into IR
and then later on deleting the branches again, dead branches
are not parsed in the first place. This makes PE linear in time
and space regarding the size of the built IR, and not linear
in the size of interpreter code or potentially reachable code.
Constant folding of memory reads is not just performed for
always-immutable final fields, but also for fields annotated
as PEFinal.

Intrinsic methods are intrinsified during PE. For example,
the method transferToInterpreter is intrinsified to a
compiler IR node that triggers deoptimization. Since control
never returns to compiled code after deoptimization, all code
dominated by it is dead code. Dead code elimination ensures
that all code dominated by the deoptimization instruction is
not parsed, i.e., the deoptimization instruction is a control
flow sink that has no successors.

PE stops at methods annotated with PEBoundary. Calls
to such annotated methods always result in a call instruc-
tion in the compiler IR, i.e., PE does not recurse into the an-
notated method. Indirect calls that cannot be de-virtualized
during PE also result in call instructions. However, they are
often an indicator that PE could not replace the receiver of
the call with a constant, so we emit a warning message to the
language implementer.

Our experience shows that all code that was not explicitly
designed for PE should be behind a PE boundary. We have
seen several examples of exploding code size or even non-
terminating PE due to infinite processing of recursive meth-
ods. For example, even the seemingly simple Java collection
method HashMap.put is recursive and calls hundreds of dif-
ferent methods that might be processed by PE too.

5.2 VM Support for Deoptimization
Deoptimization is an integral part of our approach. The de-
optimization algorithm first presented for SELF [25] and
now implemented in many VMs such as the Java HotSpot
VM or the V8 JavaScript VM is sufficient for our purposes,

i.e., we do not make a novel contribution to deoptimization.
We briefly summarize the relevant parts here.

Deoptimization replaces stack frames of optimized code
with frames of unoptimized code. Because of method inlin-
ing, one optimized frame can be replaced with many unopti-
mized frames. Replacing one frame with many frames usu-
ally increases the size needed for the frames on the stack.
Therefore, lazy deoptimization is necessary: When a method
is marked as deoptimized, the stack is scanned for affected
optimized frames. The return address that would return to
the optimized code is patched to instead return to the deop-
timization handler. At the time the deoptimization handler
runs, the frame to be deoptimized is at the top of the stack
and can be replaced with larger unoptimized frames.

The optimizing compiler creates metadata, called scope
descriptors, for all possible deoptimization origin points. A
scope descriptor specifies 1) the method, 2) the virtual pro-
gram counter, i.e., the execution point in the method, 3) all
values that are live at that point in the method (typically lo-
cal variables and expression stack entries), and 4) a reference
to the scope descriptor of the caller method, which forms a
linked list of scope descriptors when the optimizing com-
piler performs method inlining. The virtual program counter
of a scope descriptor is often called bytecode index (bci). For
each scope descriptor of the inlining chain, the deoptimiza-
tion handler creates a target stack frame and fills it with the
values described in the scope descriptor and puts it on the
stack. Execution continues at the top of the newly written
frames.

5.3 Compiler Support
The high-level IR that is created by PE is compiled using a
standard compilation pipeline. Our approach makes only a
few demands on the compiler:

• The compiler needs to support deoptimization as a first-
class primitive. It needs to produce the necessary meta-
data for deoptimization (see Section 5.2). Additionally,
it needs to provide a high-level IR instruction for deop-
timization, used by the intrinsification of transferTo-
Interpreter.

• The compiler needs to be able to track assumptions
as well as communicate to the VM or directly to our
Assumption objects the final list of assumptions on
which the compiled code depends.

The compiler performs all standard compiler optimiza-
tions. However, the importance of compiler optimizations
for PE is altered compared to a standard compilation. For
example, method inlining in the compiler is not important at
all and can even be disabled because PE already processes all
relevant methods. We identified escape analysis as the most
important optimization for the performance of our language
implementations.
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Escape analysis determines the dynamic scope and the
lifetime of allocated objects. If an object does not escape
the current compilation unit, scalar replacement eliminates
the allocation altogether and replaces the fields of the ob-
ject with local variables. If an object does escape, e.g., is
returned from the method, partial escape analysis allocates
the object just before the escape point and replaces fields
with local variables for all code before the escape point [52].
Deoptimization instructions are not escape points. Instead,
information about the virtual state of an object is stored in
the scope descriptor so that the object can be re-allocated in
the unlikely case that deoptimization happens [28].

6. Limitations
Our approach significantly reduces the implementation ef-
fort for a dynamic language by decoupling the language se-
mantics and the optimization system. However, this comes
at the cost of longer warmup times compared to a run-
time system specialized for a single language. Our measure-
ments show that warmup times are an order of magnitude
longer than in a specialized runtime. This makes our ap-
proach unsuited for systems where peak performance must
be reached within seconds. However, the evaluation in Sec-
tion 7.2 shows that our system reaches peak performance in
about a minute, which is sufficient for server-side applica-
tions. We are currently exploring ways to reduce warmup
times by doing ahead-of-time optimization of our interpreter
and compiler, so that those components are already warmed
up and optimized at startup [59].

Writing language interpreters for our system is simpler
than writing specialized optimizing compilers. However, it
still requires correct usage of the primitives and a PE mind-
set. It is therefore not straightforward to convert an existing
standard interpreter into a high-performance implementation
using our system. On the other hand, building an interpreter
from scratch for our system is simplified by available high-
level language-agnostic primitives.

Guest languages often provide language features that are
not available in our host language Java, e.g., Ruby’s contin-
uations and fibers. However, we were able to implement all
language features of JavaScript, Ruby, and R. Continuations
and fibers are implemented using threads. This implementa-
tion has the correct behavior but is much less efficient than it
could be. An efficient implementation would require adding
continuations [50] or coroutines [51] to our host language.

Note that tail calls are also not provided by Java, but can
be correctly implemented in our system: In the interpreter,
stack frames of the caller are removed using exceptions. The
compiler detects that pattern and emits a tail call without the
Java runtime system noticing.

7. Evaluation
We evaluate our approach with the implementation of three
dynamic languages: JavaScript, Ruby, and R. JavaScript al-
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Figure 9: Code size (size of bytecode) of language imple-
mentations and compiler.

lows us to compare our approach with highly tuned virtual
machines that were designed for only one language, i.e.,
have a language-specific dynamic compiler. Ruby offers so-
phisticated meta-programming facilities that are difficult to
optimize [34]. R is a language for statistical computations
that has been shown to be difficult to optimize because it
is highly dynamic and reflective [33]. Because of the differ-
ences between the languages, they have been implemented
by independent teams that together shaped the core primi-
tives of our approach.

Our implementations support large parts of the standard
libraries and standard test suites: Our JavaScript implemen-
tation passes 93% of the ECMAScript2016 standard test
suite [54]. Our Ruby implementation passes 98% (language)
and 94% (core library) of the Ruby spec standard test suite.
No standard specification is available for R, but our imple-
mentation is tested using thousands of tests for compatibility
with the de-facto standard GNU R implementation.

All measurements were performed on a dual-socket Intel
Xeon E5-2699 v3 with 18 physical cores (36 virtual cores)
per socket running at 2.30 GHz, 384 GByte main memory,
running Red Hat Enterprise Linux Server release 6.5 (kernel
version 2.6.32-431.29.2.el6.x86 64). All our language im-
plementations are available online as part of the GraalVM
download [36]. The source code of the language imple-
mentation framework (Truffle), the language-independent
compiler (Graal), the Ruby implementation (TruffleRuby),
and the R implementation (FastR) are available as open
source [17].

7.1 Size of the Language Implementations
Figure 9 shows the approximate Java bytecode size of our
compiler and language implementations. For each language
implementation, we distinguish code that can be part of a
PE (interpreter code) and code that is always behind a PE
boundary (runtime code). As noted in previous sections, the
boundary between interpreter and runtime is flexible and
can be changed easily by moving annotations. Code that is
dominated by a transferToInterpreter, i.e., code that
changes specializations or collects profiling information, is
also considered part of the runtime system because it is not
reachable during PE. A large part of the language imple-
mentations (around 30%) can be part of PE. This substantial
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Figure 10: Speedup of our system relative to best production VM (higher is better).

amount of code would be implemented multiple times in a
traditional VM.

The Graal compiler [13, 14, 49] is independent of our
PE approach. Graal compiles Java bytecode to optimized
machine code, and can serve as a replacement for the Java
HotSpot server compiler [37]. We extended it with a front-
end that performs PE, and added intrinsic methods that sup-
port our core primitives. These PE parts are only a fraction of
the system: the compiler is about 500k bytecode; PE is only
30k bytecode. This suggests that the approach is transferable
with modest effort to other optimizing compilers.

7.2 Peak Performance
We measure the peak performance of our system for each
language. The baseline is the best performing language im-
plementation system for that language: the V8 JavaScript
VM (version 5.3.332.6), JRuby (version 9.1.6.0 revision
aba18f3 with invokedynamic support enabled, running on
a Java HotSpot VM 1.8.0 102), and GNU R (version 3.3.2).
We take the arithmetic mean of the execution time for
10 runs and compute the peak throughput obtained after
warmup. The warmup time is between 30 seconds and 90
seconds per benchmark, depending on language and bench-
mark. After warmup, every benchmark has reached a steady
state such that subsequent iterations are identically and in-
dependently distributed.

Figure 10a shows the speedup of our JavaScript imple-
mentation relative to the V8 JavaScript VM. We use peak
performance benchmarks from the Octane suite, which is
the benchmark suite published by the V8 authors. We ex-
clude code loading and latency related benchmarks (where
we are significantly worse as explained in Section 6) and GC
throughput related benchmarks (where we are better because
of the parallel, server-class GC algorithms provided by the
Java HotSpot VM). While on average we are slightly slower
than the highly optimized V8 VM, we are in the same range
and can even outperform V8 on some benchmarks. It shows
that our set of core primitives is sufficient for achieving the

performance of a highly optimized specialized language im-
plementation.

Figure 10b shows the speedup of our Ruby implementa-
tion relative to JRuby. We use the optcarrot benchmark [35]
(recently chosen for measuring improvements to the main
Ruby implementation, i.e., representing the patterns they be-
lieve to be important) as well as some benchmarks from
the computer language benchmarks game [18]. JRuby runs
hosted on a Java VM and generates Java bytecode for Ruby
methods. The bytecode is dynamically compiled by the Java
HotSpot server compiler like any other bytecode originating
from Java code. Like our approach, JRuby also leverages
an existing complex runtime system and garbage collector.
The performance is, however, significantly slower because
of the semantic mismatch between Java bytecode and Ruby
language semantics. JRuby cannot solve this semantic mis-
match because standard Java bytecode does not provide a
mechanism like our core primitives to communicate infor-
mation to the dynamic compiler.

Figure 10c shows the speedup of our R implementa-
tion relative to the GNU R bytecode interpreter. We use
a set of benchmarks from the computer language bench-
marks game [18] and the programmation subsection of the R
benchmarks 2.5 [56]. They include diverse code patterns like
scalar, vector and matrix operations, arithmetics, statistical
functions, loops and recursion. For the set of benchmarks,
the performance differences vary greatly. For some R bench-
marks that perform operations on small operands, we obtain
large speedups due to the reduction in interpreter overhead.
For others that perform large vector operations, we obtain
smaller performance gains.

Overall, all our language implementations are competi-
tive with the best specialized runtimes, which have been op-
timized for more than a decade for each respective language.

7.3 Impact of Optimizations
Figure 11 evaluates the impact of several core primitives and
the importance of several compiler optimizations. We dis-
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mean max mean max mean max

no partial evaluation 104x 320x 156x 1307x 15x 514x 

no assumptions 3.6x 18.5x 2.3x 4.7x 1.2x 2.2x 

no escape analysis 7.9x 33.4x 36.9x 194.2x 4.4x 16.4x 

JavaScript Ruby R

Figure 11: Slowdown when disabling optimizations, rela-
tive to our system with all optimizations (lower is better).

able optimizations selectively and report the slowdown. For
each language, we show the geometric mean of the slow-
down for all benchmarks presented in the previous section,
and the maximum slowdown (the slowdown of the bench-
mark that performs worst when disabling that optimization).

The configuration no partial evaluation disables PE, i.e.,
disables dynamic compilation of guest language functions.
Execution runs in the interpreter only. Performing no PE at
all leads to more than 100x slowdown for JavaScript and
Ruby, but can vary widely for R workloads given that the
interpreter overhead depends on the operand size and many
R programs operate on large vectors. Our interpreters are
written in a high-level style in the managed host language
and do not use fine-tuned assembler code templates, so the
performance difference between interpreter and optimized
code is higher than in traditional VMs.

Most core primitives presented in this paper cannot be
disabled. For example, when disabling the handling of
PEFinal fields, PE does not traverse much of the interpreter
because such fields are pervasive in all interpreter data struc-
ture, i.e., disabling PEFinal fields is equivalent to disabling
PE completely. The only core primitive that can be disabled
independently is the handling of assumptions. The configu-
ration no assumptions shows the performance impact when
the method isValid for assumptions is not intrinsified, i.e.,
when an explicit check for validity is emitted in compiled
code. This leads to a slowdown of about 2-3x. One caveat
here is that language implementers know that assumptions
have zero overhead, so there might be a bias towards using
more assumptions than necessary. It might be possible to
coalesce fine grained assumptions into coarse grained as-
sumptions and remove redundant assumption checks.

Escape analysis is an essential compiler optimization.
The interpreter uses objects pervasively to pass data be-
tween interpreter methods, e.g., to store local variables. The
configuration no escape analysis leads to an order of mag-
nitude slowdown. The slowdown is higher for Ruby be-
cause Ruby implements even basic arithmetic operations as
method calls, which leads to more temporary objects used
in the interpreter at function call boundaries. R code that
spends time in long running computation loops does not
depend that heavily on escape analysis. In contrast, escape
analysis for Java has been reported to yield a speedup of
about 2% for the Java DaCapo benchmarks, and about 10%
for the Scala DaCapo benchmarks [52]. This underscores
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Figure 12: Percentage of functions with stable specializa-
tions after a certain number of function invocations.

that escape analysis is optional for compilation of normal
Java bytecode, but mandatory for our approach.

7.4 Stabilization of Specializations
We measure how fast interpreter specializations stabilize. A
stable state is necessary before PE, otherwise the compiled
code would deoptimize immediately. Figure 12 plots the per-
centage of functions with a stable state against the number
of function invocations (the x-axis of the chart). We exclude
functions that were run only once. For JavaScript and Ruby,
only a few functions are stable before the first invocation,
i.e., have no interpreter state that is specialized. R behaves
differently because the implementation uses many small dis-
patch functions that do not need any specialization.

In all languages, specializations stabilize quickly and
show the same specialization behavior. 95% of all func-
tions do not change specialization state after 10 invocations.
The maximum number of specialization changes is 56, i.e.,
the last data point in Figure 12 is 100% for all languages.
Therefore, 56 is the worst case upper bound for deoptimiza-
tion and recompilation of any function in our benchmarks.
Any reasonable compilation policy initiates compilation of a
function only after several executions, so the compiled code
of most functions is never deoptimized. This shows that our
approach of specialization in the interpreter is practical and
does not lead to an excessive amount of deoptimization and
recompilation.

8. Research Enabled by Our Approach
This paper focuses on the foundation of our system, i.e.,
the core principles and primitives of PE. Language devel-
opers usually wrap them in higher-level building blocks.
Many of them can be shared between languages, for ex-
ample the implementation of a language-independent object
model [12, 60]. The implementation of specializations can
be simplified using a domain-specific language [26].

Implementing many languages within the same frame-
work offers other benefits. A language-independent instru-
mentation API separates language implementations from
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tools [57]. Specializations ensure that tools have zero over-
head on peak performance when they are disabled; deopti-
mization and recompilation allow tools to be enabled and
disabled any time during execution. This includes but is not
limited to debuggers [46] and profilers [42].

While this paper focuses on JavaScript, Ruby [45], and
R [53], other dynamic languages that this paper did not
evaluate such as Python [62] reach a similar peak perfor-
mance [31]. The approach also provides good peak perfor-
mance for statically typed low-level programming languages
such as C [19, 20] or LLVM bitcode [38]. Languages can
be combined and optimized together, enabling multi-lingual
applications without a performance overhead [21]. The in-
tegration of low-level languages is important because many
high-level dynamic languages provide a foreign function in-
terface to C [22].

9. Related Work
We introduced our ideas in a previous paper [61] that did
not present an actual implementation and did not contain
an evaluation with real-world languages. This paper shows
which concepts described earlier are essential core primi-
tives, and which ones are higher-level concepts that can be
implemented using the core primitives.

PyPy [6] uses meta-tracing [7] to derive compiled code
from an interpreter. The trace-based compiler observes the
interpreter executions [8, 39]. Like our core primitives, the
interpreter implementer has to provide hints to the com-
piler [10]. Trace-based compilers only trace some paths, and
the language implementer has no control which paths are
traced. This unpredictability of tracing leads to an unpre-
dictable peak performance. In contrast, our method-based
partial evaluation with explicit boundaries gives language
implementers guarantees about what is compiled, and there-
fore predictable performance.

Partial evaluators can be classified as offline and on-
line [27] and have been used in many projects to special-
ize programs. Schultz et al. [44] translate Java code to C
code that serves as the input to an offline partial evaluator.
Masuhara and Yonezawa [32] proposed automatic run-time
bytecode specialization for a non-object-oriented subset of
Java with an offline strategy. Affeldt et al. [1] extended this
system to include object-oriented features with a focus on
correctness. Shali and Cook [47] implemented an offline-
style online partial evaluator in a modified Java compiler.
Bolz et al. [9] derive a compiler from a Prolog interpreter us-
ing online partial evaluation. Rompf et al. [40] derive a com-
piler from an interpreter using Lightweight Modular Stag-
ing. These approaches perform partial evaluation only once
and do not provide a convenient mechanism to transfer back
to an interpreter, i.e., they do not support the core primitives
we proposed in this paper. We therefore believe that these ap-
proaches are not capable of optimizing dynamic languages.

Partial evaluators targeting Java suffer from the fact that
Java bytecode cannot fully express all optimizations [43].
The intrinsic methods introduced by our core primitives ex-
pose few but sufficient hooks to influence compiled code.

A number of projects have attempted to use LLVM [29]
as a compiler for high-level managed languages, such as
Rubinius and MacRuby for Ruby [30, 41], Unladen Swal-
low for Python [55], Shark and VMKit for Java [5, 16], and
McVM for MATLAB [11]. These implementations have to
provide a translator from the guest languages’ high-level se-
mantics to the low-level semantics of LLVM IR. In contrast,
our approach requires only an interpreter; our system can be
thought of as a High-Level Virtual Machine (HLVM).

In traditional VMs, the host (implementation) and guest
languages are unrelated, and the host language is usually
lower-level than the guest language. In contrast, metacircu-
lar VMs are written in the guest language, which allows for
sharing of components between host and guest systems. The
Jikes Research VM [3] and the Maxine VM [58] are exam-
ples of metacircular Java VMs.

10. Conclusions
We presented a novel approach to implementing dynamic
languages. It combines the use of partial evaluation for au-
tomatically deriving compiled code from interpreters and
the use of deoptimization for speculative optimizations.
Our runtime decouples the language semantics from the
optimization system. This separation of concerns reuses a
language-agnostic optimizing compiler and only requires an
implementation of language semantics as an interpreter in a
managed host language. The interface between the compiler
and interpreter is a small set of core primitives. Language
implementers use these primitives to specialize guest lan-
guage operations and control deoptimization. Partial evalu-
ation, enhanced with these core primitives, enables dynamic
language implementations to achieve competitive and some-
times even superior performance compared to runtimes that
have language-specific optimizing compilers with heavy in-
vestments in language-specific fine tuning. We believe that
the reduced complexity for implementing languages in our
system will enable more languages to benefit from optimiz-
ing compilers. Furthermore, we believe it can also lead to
accelerated innovation in programming language implemen-
tations.
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